AD-A175 198

UNCLASSIFIED

SINULRTION USING SMALLTALKCY) ARMY BALLISTIC RESERRCH
B ABERDEEN PROVING GROUND MD

T 86 BRL-TR-2764

R A HELFMAN ET AL

>

3
,
d
"
d
Y
Y
5
-
N
N
N
A
R
e

Bt

LS

o
T

- o gy ‘

PR e

AN

N
.

N
\'.

=

WZ-j
a2

l"“,% -, o

| I3 , ¥

N TR,

o

e

v -

I

FFFEEER

EEEE

-

rer

r
re

I

N
O

I

/
yROCOPY RESOLUTION TESTi CHART) ;;

&

(A

o e
-’
B gt = ghe SR

L e e -

- O

R OGEAODOG NGOG GO TR I IUTOTDULD \ . . " -
‘?"u""'-] ﬁu.“’.‘iv“." "‘h‘?u’ "l,“',‘.h. h‘?‘t"'l“.b“'.h‘ %'-J‘i"'l‘ "t"'!‘a'b‘-'i MW IN P * TP R MR AA r'l.' L""l 200

US ARMY
MATER'EL

o TECHNICAL REPORT BRL-TR-2764
o0
o))
o
}Q SIMULATION USING SMALLTALK
F
<
A
Richard A. Helfman
< Mark H. Ralston DT' C
J. Robert Suckling EL:—.CTE
DEC 121986
.-
Q.
8 October 1986
L
commed
=
=2
!S APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

US ARMY BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND

B e e P A Y e e e Rl 5 A s NS N S T
LRy s T 4 o W o ..
B A bty S ol S I A A GO o e

S e e

o

‘u-.»-

Destroy this report when it is no longer needed.
Do not return it to the originator.

b
A}
: Additional copies of this report may be.obtained .
" from the National Technical Information Service,
Y U. S. Department of Commerce, Springfield, Virginia
' 22161. .
R
¥
0
)
k)
K
4
k,
B
#
N
«
24 .
D
J
’

_ The findings in this report are not to be construed as an official
\ Department of the Army position, unless so designated by other
authorized documents,

The use of trade names or manufacturers' names in this report
does not constitute indorsement of any commercial product.

0
2 a et "atal

o |
"""
£ ‘l
e
- UNCLASSIFIED
P '§’m SECURITY CLASSIFICATION OF THIS PAGE (Phen Date Entersd)
QY“
Aot READ INSTRUCTIONS
.z N }. REPORT NUMBER 2. GOVTY ACCESSION NO. 3. RECIPIENT’'S CATALOG NUMBER
508 : o ! 2
et TECHNICAL REPORT BRL-TR-27€4 Ap-A1siié
A 4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
s SIMULATION USING SMALLTALK FINAL
e
ol
C" 6. PERFORMING ORG. REPORT NUMBER
A%
(R
8.
M) 7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
e Richard A. Helfman
. Mark H. Ralston ACN 82562
_‘ J. Robert Suckling
A
l:* 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT, TASK,
& S U.S. Army Ballistic Research Laboratory AREA & WORK UNIT NUMBERS -
:: 3 ATTN: SLCBR-VL
T Aberdeen Proving Ground, MD 21005-5066
o ", C%NTKO‘_LING OFF!(;E N.AME AND ADDRESS 12. REPORT DATE
oy U.S. Army Ballistic Research Laboratory
S . QOctoberxr 1986
‘Q : ATTN: SLCBR-DD-T 3. NUMBER OF PAGES
% ,',: Aberdeen Proving Ground, MD 21005-5066 170
;:. N 14. MONITORING AGENTY NAME & ADDRESS(if different from Controlling Office) | 15. SECURITY CLASS. (of this report)
X
e UNCLASSIFIED
\:~ TSa. DECLASSIFICATION DOWNGRADING
N SCHEDULE
l' 1
::. 16. DISTRIBUTION STATEMENT (of this Report)
l.“‘ Approved for public release; distribution unlimited.
-v".(.
o
g
't.l' 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)
l:|':
N
o
;[l ‘ 18. SUPPLEMENTARY NOTES
B
l‘ {
.’c':
-:l:&- 19. KEY WORDS (Continue on teverae aide if necessary and identify by block number)
- - : .
h‘.; simulation
: object oriented programming
y§$
3::'.' 2C ABSTRACT (Continue an reverse side If necoesary and identify by block number)
s ~ Object oriented languages have been used successfully in such areas as
T simulation, systems programming, graphics, and Artificial Intelligence (Al).
fs.ﬁ:. Object oriented programming has become increasingly popular in the 1980's.
(LA SMALLTALK is an object oriented language developed by Xerox, that has features
- particularly suited to simulation.
o .
“h (Continued)
*
::" FORM
N DD 1473 EDITION OF 1 NOV 6515 OBSOLETE
! PIan T UNCLASSIFIED
— SECURITY CLASSIFICATION OF THIS PAGE (Wiren Data Entered)
l"
Y
\m;‘"!.‘l H

At ¥

P M M W R e e N N A T e T N N T A T R
RIS DN I LRI T s D0 T T 2 T i

8 A S RO R L L
B P ST R N TR KA N B

UNCIASSIFIED
£ SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)
1&: The purpose of this paper is twofold, the first is to acquaint the reader
) with t' concept of object oriented programming; the second is to describe how
A the ob,cct oriented language SMALLTALK was used for a simulation application at

the U.S. Army Ballistic Research Laboratory (BRL).

-

The common theme in object oriented languages is objects. Objects possess
properties of procedures (functic s, subroutines) and data since they perform
computations and store information. This dual role contrasts with procedura)
languages such as C, FORTRAN, and PASCAL which separate procedures from data.
Objects communicate by sending messages to other objects. Similar objects can
be grouped to form an entity called a class. A class represents a generic kind
of object, and can be thought of as a pattern or template for that kind of
object. The classes themselves can be objects, and classes can be grouped to
form a hierarchy of classes. An object in one class can inherit the behavior

K. ﬂ'fr;';_‘r‘f." 2

LA

-

f‘ of objects in its superclasses. Thus one can easily define classes that are

u "nearly alike", since inheritance eliminates the need for duplicating redundant

. information.

o

k- The U.S. Army Quartermaster School, Ft. Lee, VA, commissioned the BRL to per-
i~ form a study of the Graves Registration (GRREG) Service. The thrust of the study
o was to evaluate the GRREG requirements of the future battlefield and evaluate

the ability of the GRREG system to meet these requirements. The study provided
- 1) a base line analysis of the ability of the present system to handle conven-
ks tional and contaminated remains, and 2) an analysis of several alternatives,
including changes in force structure, equipment, and GRREG procedures. The

, recommendations of the study are intended to provide the Logistics Community a
direction for changes in graves registration doctrine, procedures, and organi-
zations.

o The GRREG services are best described as a network of queues. The network
is rather complicated: consisting of several hundred individual queues that are
. interconnected either in series or in parallel. The network will be described
T in three levels of detail, with the basic level consisting of the individual

' task queues, the intermediate level consisting of the three types of collecting
_ points {initial, intermediate, cemetery), and the top level showing the flow

A from one collecting point to another.

Selected sections of the code will be examined in detail to illustrate the
various stages in the 1ife of a GRREG worker, including creating a worker,

s assigning a task, performing a task, and returning to idle status. Relevant
- parts of the code will be reproduced as needed with the discussion, and the
';j complete code is included in the appendix.
N
N
V!
<
%
:-:
0
o
':f
Y.
95
\.:
'-'
X
- UNCLASSIFIED
Y SECURITY CLASSIFICATION OF TrI& PAGE/When Date Ercered

RO KRS

.
PO)
el o N T

‘e,
-
ol

CONTENTS

o I. INntroduction....iiieieieeseennscsssssnenesossnsnnensans 1
. II. Object Oriented Programming....soceeeeesoccnecnsanas 1
i 1. HiSBOrYiieiiieeeeeeeeeoeeeeononeanoneonnnnnsnonns 2
Wl 2. Objects and MeSSAgeS..cereeeeeerscsarsescscsansosss 3
:ﬁﬁ‘ 3. ClasSSeS.ceeetesasosortecosseossscssosssoanssonsnnoss 3
T 4. INheritancCe.....eveeeeeeeececnnsensesannnenanases 3
i . 5. Data Abstraction....ieeveieeeisecescrsocnosasannss 4
RE
! III. Introduction to SMalltalk.e.eeeeveeeeeneoeeeeeeennns 4 -
j&ﬁ , 1. Syntax and EXampleS...c.eeeeeececasaoseosonsonsas 5 .
“?4 2. ObJECtS e et nitersosstenssesesssssnssanssssnnsoans 7
gg3 3. ClaSSeS.cereisronsssssssossssssenosssssensessonaas 7
IRYM 4. Subclasses and SUPErcClasSSeS..cicesnssssvsossnsans 9
. 5. Pseudo-variablesS..ceceeereeeetnensnscncsoncanss 9
ot 6. Messages. et e e e et e ettt ettt 10
N a. Messages without arguments......ccceveveenn . 10
bt b. Messages with keyword arguments... ceereseess 10
S v €. Arithmetic messages......evvvevecneecencnones 11
L 7. ASSIigNMeNntS . eierttteeretessssssconssosossenocss 11
‘ 8. Returned ValuesS..ccceeiiisesosonessesssnnsannnss 11
3¢8¢ 9. Blocks and ArgumentS......ceeeececcecncesaasneans 12
ooy 10, CoNVentionS...ceeeeeeeeeseosesoesesssnessassocacase 13
1 IV. Predefined Classes in SmalltalK.....eeeeeoecenseeeacas. 14
K 1. ObJeCt..veeeeerseesososossesesestasasssnesacnacaas 15
. a. Undefined ObjecCt....veeesecescscsesoroncennes 15
38 D. SYMDOLesevnsoneeenoonaenssnseneanneaneenaensas 15
X{} C. BOOLEAN..:v:vsusssenestosssnsasssssassaanenes 15
N d. Magnitude.....iveeereseonnescssonenenn . 15
N (1) Char.....iosesseeccncacansonesensasonnas 16
b (2) NUumber....ceieesoesssescnncarscssvssasseas 16
. (3) Radian...eieeveeeessrsosesacsnscensensnnes 16
;:.‘:. (4) POAINE...eevverereeeoenensnoosenanasnnees 16
s €. RANAOM..uvreernnesronnnesennnssonnsnesannnees 17
*k f. COlleCtioN..eevessssessosasnssonsonsssasaases 18
el (1) Bag/Set..eeeeeeeeeeeeeeonesssosnnssenaes 18
S (2) KeyedCollectionN..eieeieeeveoseeosncosnaes 18
. (a) Dictionary....e.eeveveesceeoceaceass 19
'53, (b) SeguenceableCollection............. 20
Oy g: BlOCK.uiiieeseeoeosossessssessessssoaasssonssas 22
W he ClassS....icievereereeesneassscsnsnensascnennes 23
‘k g 1. ProOCeSS....seessecssessscoseosssscnsoonsesnsss 23

i V. Classes and MessSageS..cseeeecesncesanons
S 1. The Message 'new' e eeeeaean

y 2. Class Descriptions...ivevececriiirieesonsasnaseaaas 23
o 3. Example: Class Probablllty Ceeenaeen e

f 4. Example: Class UniformM...eceeesseeasessacacssnase 25
e 5. Messages to Uniform and Probability........c.ve... 26

o iii
,...,3

.

T T LN
+

‘ﬂ. |.;.\.A‘!.‘ (M)y ‘.! ‘l‘ ‘- " M '."I(‘ ,ﬁ . A

('v’ 'r(\f-/‘,i 4“ . -“'\"A“"- ¥ “"" . ! _"» W
ry *“'t‘ ot s Mt il 'o"&‘ wiintleln Vihatighy

.

o g

2 6. Pseudo-variables 'self' and 'super'.......cso00... 28
t. 7. ReturnedValues..'...........'.l.l'..!'.Ql....l.’ 29

' VI. Simulation ExXample....eeeesesssonsconns 30

‘ 1. Introduction...eeeceieerenessosconsoncosssssnsseseses 30
" 2. Background of Graves Registration................ 30
Y a. Description of Service...ceeieeeecceseosseeas 30
‘ b. Organizations and Equipment......ceveveeeeees 32

C. Doctrine...ieiseeseosesrsooscessscessoscsncaseas 32

VII. GRREG Queuing NetworK.....soieeeeseevsosescsnscosacssess 35

3 1. Introduction....ccoiitiinntinieeenneennssssessesnsas 35
P a. Definitions.....iieeeereecessncscssessssansess 35
: b. Network Structure......ceeeeveeeeessescesecsaee 35
E- 2. Top Level NetwWorK...ceieeooeosensonsssssennssaases 36
S 3. Intermediate Level NetworKsS......oeeueeueenonenss 37
' 4. Parameters for Basic level QueuesS.......cccee0ee. 39

. a. Arrival ParameterS....csecceececccsoccssosss 39
Q b. Service Parameters.....cceeeeeeeeessessneeses 39
& C. Queue Discipline....ieceeeeeceereecasesneess. 40
VIII. Code DetailsS...veveeesssvsnosionesesosacsnnsensanceass 49

1. Running the Simulation....ceceececreecenseenacees 49

. 2. Global VariableS..coeeeesresossosessesanoasassnss 50
| 3. The Life O0f @ WOXK@rY ..o veveoeenooonsosonnseeseesa 51
3 Q. Start UpP.cveesieeessssescessscasascassssnsees 5l
& b. Scheduling TasKkS...:eeeseeeesncsesseoscassesss 52
R, C. Task PrioritiesS....vieeeeeersssessssesenssnse 54

IX., CONClUSIONS ..t vessoseososssesossssosnsssssensncenocasssae 63
, e SUMMATY . e v e enevennonenonsosnenesenscesnsnsosnsnsennens 63
!

o REFE RENCE S . ¢ ¢ ¢ e oo oo eeososasossennossecssnsesssaseassencscnsas 64

. APPENDIX: Source Code....... s«

e 6 et et e s e e e s e a st e e s . . 65

P IntrodUCtion. cvviveteenensostosssssssssesssassnsasess 67
- Class BOQY.:eeeeetoeeeosaensasoecsoseneasnonensnnns . 72
' €Class ClOCK.::iveeosocrocesonnocsscs .o e e . 74

~ Class CollectionClasS..cieesesesenccsonsnnns con 77
N Class COllectionPoint. . iveieneeneeoeonnnononennenen s 79
3 Class CPTrUCKS.eceetrtotetonssosssrossocacnesossaneas 84
N Class DemMONTaASK: e st trtssosessssnossoneransscnsossas 101
. Class ENViroNnmeNnt..oeeeeeeeessoesaossonaaanonnesos 102
u Class GeNTrUCK.: s e et v settonssssosscesssssssssessassseas 103
(- Class GlobalData...eeseevesesscoannsssnccsasncsnsnns 105
L Class Identity..ooveeernnns ettt e et et 106

5 Class IdleTasKeeeotosossosaossssosaossasasssssnsssnsssssss 108
Class IntermediatePoint.. .. reernntneesonnsonsonens 110
Class ObJ).ceenvcnnnonnns .o
Class Probability...ccoveeeennns
) Class ReStart. .. iveeervreennocs
Class RestartToo0lsS. ..o evencses

[
-
te]

iv

. “.,'\'\' d »1

Q% A ‘\~

_ . " . . PR TR v P op - aa ¢ . . gy Al < S o “,w"“ﬂww

§ Class Simulation.....oevvnvureernonnnrennesnenesesass 126
\ Class SuperReStart.iiieeeesesesesrssnsocsssssssassssas 127

- Class TasSK.eseoesoseossasaessstsscnsnnssasnosnsancessss 130
b Class TemporaryCemetery..coeeeeceeessaonencssacconesss 131
Class TrUCK. . e eiceossessosnsssssssusssassnsssssscsnssss 143
Class Uniform...seseseeceessssssssssasasssasasesesess 145
X Class USErACCEeSS..verstecccsssssvsssssoonsasssascesss 146
W Class UserData@....eeeeseeececescsnscsssosasenasanases 147
k_ Class WOrKer...ieeereeeeeosasecsosoonccssonasscscanssss 149
i Class GenericTasKS.:cceeeeeesetosoascsesosaassosasssss 152

DISTRIBUTION LIST..vuuuiuiiieaoeceecnaseceosasscsnsasnsecconcanaassssaees 161

Accession FoT

T 'rrn&l-ﬂw
DTIC <

ELECTE PTIC B .
oy DEC 121986 |

o, -

. -

W T
‘p‘{\ (l'.f

y ~ p e "" EN -(, (o X RV
r’l'n‘l’c’l ."\ i o & :"Q. .Qw .’l' ‘I‘.’l \ ’ & A - l \} A A

- e
STl

“taT Al

e

ZArLEASA,

o R oul I T By e =

FE NN

Figure
Figure
Fiqure
Figure

Figure

......

LIST OF ILLUSTRATIONS

Top Level NetworK...vieeeevosoosatsecssaoss
Example High Level NetworK...sveeeeeoeoeoosss
Initial Collecting Point Task Network......
Intermediate Collecting Point Task Network.

Temporary Cemetery Task NetworK.....eoeeeeee

vii

P

PR

~ R] "4
e \‘\""(_ AR ENES

8

34
36
43
44

45

GO Ty

(
Baliar

¥

{

J

U LIST OF TABLES

TABLE 1. Task List Initial Collecting Point........cco.vvee. 40
TABLE 2. Task List Intermediate Collecting Point.....c.oc0.. 41

TABLE 3. Task List Temporary Cemetery....vceeeeeescsccosesoss 42

-
‘ g
! ix

LIST OF EXHIBITS

Exhibit 1. Smalltalk ClaSSeS....eceeceecsoesccsssssassssss 14
h-"‘.' Exhibit 2 . Source COde for TaSkS. ® 8 ¢ 0 5 8 0 85 4 8 8 0 8 0 0B S s 00 0 e 46
Exhibit A-1. GRREG Class HierarcChy....eceeeeeeesecsessscecess 68

Exhibit A=-2., Class DesCriptionsS...iccieceieecccscessscseasass 69

LN S g
FElr Pt

xi

> x
b ¢
i
e B A AT T R T R R T T G I S R S R R I R N R S I
g) 5 o T e T e T N R e T i T Ay g
¥ N Rt N M A : s - AT VYT ETE.TY. T, . - 4 '

FArArA

o gl

P

. AT

A \j
N
;; I. Introduction
. Simulation is a powerful and widely used analytic tool. It
o is often the only useful tool for problems that defy mathematical
e formulation. There are many situations which cannot be solved
SN mathematically due to either the stochastic nature, or to the
‘o complexity, or to the interactions of the elements of the model,
and simulation can often be used to obtain relevant answers.
:ﬂ An essential part of any simulation is a representation of
N the system under study. This representation leads to the con-
- struction of a computer program that "describes™ the model to be
N studied, and there are several commercial simulation packages on
* the market, including SIMSCRIPT, GPSS, SLAM, SIMULA, and GASP
» that have been widely used.
.\-:
o Object oriented programming has become increasingly popular
‘gﬁ in the 1980's. Object oriented languages have been used success-
Pae fully in such areas as simulation, systems programming, graph-
- ics, and Artificial 1Intelligence. SMALLTALK is an object
- oriented language, developed by Xerox, that has features particu-
o larly suited to simulatioen.
'-‘-
:ﬁ The purpose of this paper is twofold: the first 1is to
o acquaint the reader with the concept of object oriented program-
\ ming; the second is to describe how the language SMALLTALK was
} used for a simulation application for the US Army.
[} -_".\
e The paper is organized in several parts. “hapter 1II
-t discusses the history and basic features of object oriented pro-
Jy gramming. Chapters III- V describe the syntax of <the SMALLTALK
. language. Chapters VI-VIII describe how SMALLTALK was used in a
! simulation for the US Army Quartermaster School, and chapters IX
/ v and X contain conclusions and a summary.
o
D :1
b -
".\'
N II. Object Oriented Programming
ﬂj This chapter will discuss some of the generic features of
e object oriented programming, starting with a brief history, and
~! then explaining some of the key features including objects, mes-
L~ sage passing, and inheritance. Much of the latter discussion is
3 based on thelarticle "Object Oriented Programming: Themes and
T Variations".
h:::i
'.v \:
. 1
-’\-
B
..

La

<

A

I-“

PR
e
-

LIEY

o,

j»
18

1. History

Tge roots of obiect criented programming can be traced to

SIMULA® , a simulation language developed by Sperry Rand Cor-
poration. Although other systems have shown some object oriented
tendencies, the explicit awareness of the idea, (including the

term !Yobject oriented"), cape from the Smalltalk effort at
Xerox.~ The language SMALLTALK is the first major interactive
graphic based implementation of object oriented programming.
Many key concepts of object oriented programming can be seen in

a variety 50f otger languag;s today. Frame based AI languages

such as KEE” , FRL and UNITS use inheritance of properties
and/or valugs. Objects and messagg passing occur in several LISP
dialects: T , XLISP, COMMONLOOPS.

1. Stefek, Mark and Bobrow, Daniel. "Object-Oriented Program-
ming: Themes and Variations," AI Magazine, Winter 1986,
pp. 40-62.

2. Dahl, 0.J. and Nygaard, K. "SIMULA - An Algol Based Simula-
tion Language,'" Comm. ACM, No. 9, 1966, pp. 671-678.

3. Rentsch, Tim. "Object Oriented Programming," Dept. of Com-
puter Science, Working Paper, UCLA, n.d.

4. Goldberg, Adele and Robson, D. "Smalltalk-~80: The Language
and its Implementation," Addison-Wesley, 1983.

5. Fikes, R. and Kehler, T. "The Role of Frame-Based Represen-
tation in Reasoning," Comm. ACM, Vol. 28 No. 9, 1985, pp.
905-920.

6. Goldstein, I.P. and Roberts, R.B. "NUDGE, A Knowledge-Based
Scheduling Program," IJCAI-1977, pp. 257-263.

7. Stefik, Mark. "An Examination of a Frame-Structured
Representation System," IJCAI-1973%, pp. 845-852.

8. Rees, J.A., Adams, N.I., and Meehan, J.R. "The T Manual,"
Yale Univ. Technical Report, Jan. 1984.

9. Bobrow, D.G., Kahn, K., Kiczales, G., Masinter, L.,Stefik,

M. and Zdybel, F. '"CommonLoops: Merging Common Loops and
Object- Oriented Programming," ISL-85-8, Xerox PARC, Aug,
1985.

P T P R TN T O o R E T T T P P T P P W PR U W T I v Y= r-y=v - v

2. Objects and Messages

The common theme in object oriented 1langu.ges 1is objects.
Objects possess properties of procedures (funccions, subroutines)
and data since they perform computations and store information.
This dual role contrasts with procedural languages such as C,
FORTRAN, and PASCAL which separate procedures from data.

Objects communicate by sending messages to other objects.
When an object receives a message, it typically performs some
action. The action might include numerical computations, storing
or updating local information, or sending further messages. Mes-
sage passing can result in a kind of indirect procedural call.
Instead of calling a procedure to compute some value, one sends
an object a message to perform some computation.

The actions an object takes when it receives a message are
called its method for that message. A method roughly corresponds
to a procedure in ordinary programming lainguages.

3. Classes

Similar objects can be grouped to form an entity called a
class. A class represents a generic kind of object, and can be
thought of as a pattern or template for that kind of object. The
real numbers might be grouped into a class, say class Reals.
Rather than specifying the behavior of each real number, one only
needs to define how an arbitrary member of class Reals will
respond to various messages. To carry this further, the classes
themselves can be objects, and classes can be grouped to form a
hierarchy of classes. For example the class of Numbers might
contain Reals and Imaginaries, and Reals could have subclasses
Integers and Floats.

4. Inheritance

With a hierarchy of classes, an object in one <class can
inherit the behavior of objects in its superclasses. This has
several important consequences. First, it greatly simplifies the
task of specifying how an object will respond to a message. Con-
tinuing with the Numbers example, if the class Reals has a method
(procedure) for the message 'isPositive! (i.e. "is this a posi-
tive number"), then 'isPositive' need not be repeated 1in class
Integers nor in class Floats, since each will inherit all methods
in its superclasses. Thus one can easily define classes that are
"nearly alike", since inheritance eliminates the need for dupli-
cating redundant information.

.-- '. ,—'. B I TPLI D '.A_.. R
PRI . e »
2Tt A,

Y - . . v - " - -, N . 2 = - ‘ S i Rte atd Akl afth aid adh b Ak bt sl el "okl TV T TN

5. Data Abstraction

>

:

% The idea behind data abstraction is that of defining a pat-
? tern or template for objects. Objects can then be declared to
- be of a particular pattern and can inherit all the attributes and
2 behavior defined by the pattern. As in Simula, such a pattern is
X called a class. (cf. the term package is used in Ada). Data
abstraction allows individual objects to inherit the properties
of the classes to which they belong.

Data abstraction localizes (and conceals) the details of an
N object. Conceptually, each class of objects resides on its own
- machine or computer, and objects communicate with each other only
3 by passing messages. In effect, the objects partition the
- system's memory into disjoint blocks. Since all objects in a
» class have the same properties, the code for a class can be exam-

ined once to identify those properties. If a change 1is neces-"

, sary, it need be made only once in the class definition rather
e than once for each object in that structure. Thus data abstrac-
X tion localizes (and conceals) the details of generating and mani-
y pulating objects.

The purpose of data abstraction is to permit <the use of
objects without any knowledge of the details of implementation.

L« An example of data abstraction in our simulation is the class
Queue. The user sees such operations as 'addTo' or 'rEToveFrom'
or 'length' and need only know their visible behavior. Hidden

i; from the user are the details of how a gueue is stored inter-
nally, or how the messages are implemented.

III. Introduction to Smalltalk

This and the next two chapters describe some of the syntac-
tical features of SMALLTALK that are useful in a simulation
environment, and many useful examples are provided to give a more
concrete understanding of the language.

e N v e O]

Y Smalltalk is an object oriented language. The basic entities
- of the 1language are objects. Objects have a private memory and
are capable of sending and receiving messages. When an object

;.

Cal

[10. Cohen, A. Toni. "Data Abstraction, Data Encapsulation, and

= Object Oriented Programming," Dept. of Computer and
Information Sciences, Working Paper, Univ. of Delaware,
n.qg.

t 11. Shankar, K.S. "Data Structures, Types, and Abstractions,"
N Computer, April, 1980, pp. 67-77.

¢ recelves a nessage, it typically performs some sequence of opera-

i tions. For example, in Smalltalk, numbers are objects which can
oy respond to several kinds of messages, including ‘abs', ‘exp',
\ 'gamma', and 'Iln'. The following table gives a few of these mes-
. sages and their meaning.
)
b Message Meaning
W\ smet=-- mmes—e-
§ abs absolute value
Oy exp e raised to the power
' ’ gamma gamma value
& , 1n natural logarithm
%, reciprocal the arithmetic reciprocal
; sign -1 or 0 or 1 depending on
k whether the object is negative,
i -zero, or positive
sqrt square root if the object is

positive
o)
;3 1. syntax and Examples

The syntax of a Smalltalk expression is:
J object message <optional arguments>

where object is the receiver of the message, and the message may
contain optional arguments.

?: For example, the number 3 is an object and it can respond to
>, various messages. Thus to compute the square root of 3, one
o would send the message 'sqgrt' to the object '3!'.
Y Expression Result
‘l ----------------
A 3 squared 9
B 3 sqgrt 1.7320
3 gamma 2
> 3 reciprocal 0.3333
{ 3 sign 1
N Some messages such as '+!', '=', %! angd '/' have arguments.

Thus to add 3 and 4 together, one would send the object '3' the
message '+' with the argument '4°'.

o,
-

DAL IR

RoTs %
»

ey |
A=

b . g, . .
A KO ol T A a e o RN A S A T e L S Gt e)
R A BN S TR o o Tt TR IS Dol s PRI ENS, WO b LI My QY bl o e T '”‘" DNV

" ‘ o " o

Expression Result
3 + 4 7

3 -2 1

3 %5 15

3/ 6 .5

Numbers can also receive messages concerning magnitude, e.g. '<!',
>, t'=v, and ‘'max:' .

Expression Result
3 <2 false
3 = (6 / 2) true

3 max: (4 max: 5) 5

On the first line, the object '3' is sent the message '<' with
the argument '2°'. The result is the object 'false'. 1In the
second line, the object '3' is sent the message '=' with the
argument '(6 / 2)'. The result is the object 'true'. The last
line is evaluated from right to left. The object '4' is sent the
message 'max:' with argument '5', and the result is the object
'5'. Then the object '3' is sent the message ‘'max:' with the
object '5'., The result is the object '5'.

Note that Smalltalk contains two boolean objects, 'true' and
'false'. These two objects can receive messages such as: '&' and
'|' , which represent "and" and "or" respectively.

Expression Result
(3 < 4) & (1 > 5) false
(3 <4) | (1 > 5) true

On the first line, the object '3 < 4' is sent the message '&'
with argument 'l > 5'. Now 'l > 5' will return 'false', and '3 <
4' will return 'true', so that when 'true' is sent the message
'&' with argument 'false', the overall result will be f'false'.

D S T S U S T S

o

o

L R,
"‘J‘J:‘) .‘.v‘_.r.

R TSR N T T T O SR N
’-..I/: ',)"'.1-“}.') ‘..’_. el _'y..’

o

- e o
el
Lhe,

Ca A
M, - ‘\J.‘J‘ ;

2. Objects

"An object is a basic entity in Smalltalk. 1In fact, every-
thing is an object in Smalltalk. To completely describe an
object one must specify:

1. its private memory,
2. the messages it can receive, and

3. what it does when it receives a legal message.

Each object is capable of carrying out a certain set of opera-

tions. The nature of the operation depends upon the type of -
object. Objects representing numbers compute arithmetic func-
tions. Objects representing data structures store and retrieve
information.

In Smalltalk each integer is an object and can respond to
messages such as '+' and '=' and '*#' and '/' to name a few.
Other examples of objects include:

numbers

character strings
sets

queues
dictionaries
arrays

rectangles

files

i/o streams

3. Classes

To simplify the description of objects, Smalltalk allows
similar objects to be grouped together to form a class. All
objects in the class have the same type of private memory and

respond to the same messages in a similar way. Consider the
integers:

vee =3 -2 -1 0123 ...
These objects are grouped together to form the class Integer.
All objects in the class Integer respond in a similar way to the
same set of messages, such as '+4+' '=t' !'*! or '/!

A class can be thought of as a template or blueprint
describing all objects in the class. The template must specify:

1. what private memory the object has

1
AR
R R R

* .
a’ s

2. the set of messages the object can receive

3. what operations the object performs when it receives a
legal message.

Note however that defining a class does not create any objects in
that class. It merely specifies what a certain group of objects
look like if they are ever created. To actually create an
object, one must send the message 'new' to the appropriate
class.* For example, suppose one wants to create a vector of
size 5. One would send the message 'new: 5' to Array.

Array new: 5
Since in practice one usually wants to refer to this array by
some convenient name, say v, one would probably use the following
assignment statement instead of the above.

v <- Array new: 5

This has now created an object v which is a member of class
Array. Some examples of its behavior are shown below.

Example Result

v size 5

v print #(nil nil nil nil nil)
v at: 1 put: 3 3

v print #(3 nil nil nil nil)

When v gets the message 'size', it returns the object '5', and
then when it gets the message 'print', it returns the string
shown on the second line. The # sign indicates an array, and its
contents are given in parentheses. Since no one has yet put
anything into v, its elements are all undefined objects, textu-
ally represented by 'nil'. On line 3, the object '3' is placed
into position '1', and then v is printed again.

* There are a few exceptions to this, e.g. Numbers and Symbols
have already been created when Smalltalk is started up.

¥

T S

ARG :

G

4. 8Subclasses and Superclasses

Smalltalk comes with a rich hierarchy of predefined classes,
some of which will be described in the next section. The user
can define his own additional hierarchy of classes to fit
specific applications, and some examples will be presented later.

One class can be a subclass of another, in which case the
subclass inherits all <the memory and messages from the super-
class. Consider two classes, A and B, where B is a subclass of
A, as indicated below.

Class A
Class B

One also says that A is a superclass of B.

Suppose one declares an object, say b, to be a member of
Class B:

b <- B new
Now suppose one sends a message to b:
b 'any_message'

If the description of Class B contains a clause for
'any_message', then b will undertake the appropriate action as
defined in its class. If on the other hand, 'any message' is not
a legal message in Class B, the description of Class A will be
searched for 'any message'. If it is there, then b will execute
the operations as defined 1in Class A. If, however, it is not
there, then the search for 'any message' continues up through all
superclasses of A. (If the search fails, then an error exists,
and the undefined object 'nil' 1is returned). Note that this
search strategy implies that messages can be redefined in sub-
classes. Any message defined in a subclass will override any
definition given in a superclass.

5. Pseudo-variables

A pseudo-variable is a name that refers to a Smalltalk
object, but unlike a regular variable it can not appear on the
left hand side of an assignment statement. Some pseudo-variables
in the system are constant and always refer to the same object:

4

I’;‘-_f:'-rf.':("';"",'. 7 "-‘\,'—:r\ ™ e P o A ’w.:r, "N A '.'\ YRS "'.-}“-:-_'.\ \'r'.'«.'\k»'i!h\ '

I ¥ ‘!»‘0»“.i:‘.i.. VAR VY bl b wy,y b W R Tl e N.'

™o,
"'('\'-

M
‘i I‘o.on B

N

.

e A

a0 e

4

AN AAN

s

!

a4t

=~ i

f. .
ST

ARARAE

-
-

ekl

¥}

Pseudo-variable Meaning

nil refers to a special undefined
object
true refers to an object representing

logical truth
false refers to an object representing
logical falsity

There are two other pseudo-variables 'self' and ‘'super' whose
values change depending on where they occur. These two will be
described later. '
6. Messages
Objects send messages to other objects or to themselves.
The only way an object can interact with another is through mes-
sages. The general syntax for messages is:
object message <optional arguments>

The object is called the receiver of the message. The message
may include optional arguments. The syntax can be divided into
three cases.

1. Messages without arguments

2. Messages with keyword arguments

3. Arithmetic messages

a. Messages without arguments. The simplest form for a
message is:

object message
Examples include:
sqrt
squared

abs
print

B b

b. Messages with keyword arguments. The general form for
messages with keyword arguments is:

10

object keywordl: argumentl Xeyword2: argument2 ...

by a trailing colon. A message may contain several
keyword: argument
pairs. Examples of messages with keywords are:

V <= Array new: 5
v at: 3 put: 0.444

The receiver of the message is 'object'. Keywords are identified

c. Arithmetic messages. The third type* of message occurs

mainly in arithmetic expressions. Examples are

3 + 4
sum - 1
index <~ Dbound

7. Assignments

A constant will always refer to the same object, but a vari-

able name may refer to different objects at various times.
assignment expression has the form

variable <- expression

An

The object referred to by the variable 1is changed when the

expression is evaluated. For example,

limit <- 19
reportTitle <- 'Smalltalk Report'
sum <- 3 + 4

8. Returned Values

A message provides for two-way communication. The message
is sent to the receiver along with any arguments, and the
receiver performs certain operations. In addition, the receiver
also returns an object to the sender of the message. If the

* This syntax is preferable to the form given above, e.g. 3 +:
4.

11

'S ©n (. e
3 DAL A R e d

AR L T B 0 o L S O L L LA o Ly ¥ CR e o
-’i f‘flf\'n’ A.‘Q.’!\’ l’."‘ \' N" .‘ " .Q, X -l X ‘b' v b ,'.1 \ h .é'.

3

PR s - N
- ‘,l -
PN ahardh

s
Y

message occurred in an assignment statement, then the returned
object will be the new value of the variable in that assignment
statement. Thus the expression

sum <- 3 + 4

makes 7 the new value of the variable named sum. Even if no
information needs to be communicated back to the sender, a
receiver always returns an object, and this tells the sender that
the response to the message is complete.

9. Blocks and Arguments

A block consists of a sequence of expressions surrounded by
square brackets, and blocks are used in many of the control
structures in the language. A block can be thought of as a
deferred set of actions to be performed at some later time. Syn-
tactically, a block is an object and can send and receive nmes-
sages. When a block expression is encountered, the statements in
the brackets are not executed immediately; rather they are remem-
bered. The value returned is an object that can later execute
the expressions when sent a message to do so. The execution of
the block will take place when the block receives certain mes-
sages, such as 'value'. For example,

amount <- amount + 1
and
[amount <- amount + 1] wvalue
and
b <- [amount <- amount + 1]
b value
all have identical effects.
One example of simple control structure 1is repetition or
looping, accomplished by sending the message 'timesRepeat:' to an
Integer. The Integer will respond by sending the message 'value'

to the block as many times as it own value indicates. Thus,

4 timesRepeat: [amount <- amount + 1]

is equivalent to

F-'_m.-“-'.'mm’l‘m s s e e a8t aa may iy e i Bas den iaen San

termp <- [amount <- amount + 1]
temp value
temp value
temp value
temp value
Blocks may have one or more arguments specified by identif-
iers preceded by colons at the beginning of the block. The gen-
eral form for a block with one argument is:
[targument | one or more expressions]
Consider the following example.
sum <~ 0
b<- [:x] sum <= sum + X]
To add 5 to sum, one sends the message 'value: 5' to b:
b value: 5
A block may have more than one argument, as shown in the example

below.

[tkey :value | v at: key put: value]

The arguments first appear preceded by colons, and then after the

vertical bar, they are used without colons.

10. Conventions

The names of objects begin with small letters, while the
names of classes begin with capital letters. Also the names of
messages usually begin with small letters. This convention is

enforced by the language.

Note also there is a convention to run

TRW W v

words together, capitalizing all but the first to enhance reada-
bility. For example,
myNewObject
rather than
my_new_object
This convention is of course not enforced by Smalltalk.
13)
s
T T S T L T T R I L U U S I I R S S ™)
T U Y R S R R g T g g 1 R

., , BT '"'“"“““""““"""""’""""""""W-T

gm& IV. Predefined Classes in Smalltalk

s

;3; This chapter covers some of the predefined <classes in
b4 SMALLTALK, and the casual reader may wish to skim this material.
Rl The following sections refer to the chart given below in Exhibit

. 1. This chart lists many of the predefined classes in SMALLTALK.
e The subclass structure is indicated by indenting to the right.
o For the readers convenience, portions of the chart under discus-
o sion will be reproduced close by the written dialog, and an arrow
K. o will highlight which class is under discussion.

Exhibit 1. Smalltalk Classes

1
1958
Y
L
.;_,‘. Object .
> UndefinedObject
4 ‘\,';' SYmbOl
" Boolean
8 True
False
A Magnitude
N Char
e Number
.7 Integer
a- Float
] Radian
e Point
7 Random
o Collection
SN Bag
R Set
: KeyedCollection
45N Dictionary
o Ssmalltalk
e SequenceableCollection
R Interval
e LinkedList
File
- ArrayedCollection
e Array
O String
ot Block
= Class
N Process
-
32
3
14
(3™)/
, .‘."
o
" " TN " T L A A x ;:f;;"r;s;‘:;..-?j:; Seeers, e 'a;‘-*;;c'.:-:.;;;-:;:1.:‘?: RIANG

e aa e a a i a ba aa e bt b e e dig, |

1. Object

Since everything is an object in SMALLTALK, at the top of
the 1list there is the class of all objects whose name is Object.
The class Object has several subclasses. The first three are
called UndefinedObject, Symbol, and Boolean. By convention, the
names of classes begin with capital 1letters, and the objects
within the class begin with small letters.

a. Undefined Object. This c¢lass has only one member,
denoted 'nil', and it is used to represent undefined values. By

default, SMALLTALK initializes all objects to 'nil'. Also, 'nil'
is the object returned in an error situation. For example, the
expression

true sqrt

would return 'nilt.

b. Symbol. This is *he class used to represent the print
names ot objects in the system. Its members are created autcrat-
ically by SMALLTALK.

Cc. Boolean. This class has two subclasses: True and False.
Class True has only one member, 'true', and class False has only
one member, 'false’'.

------- Exhibit 1. (Partial) =-==---
Object
UndefinedObject
Symbol
Boolean
True
False
=> Magnitude
Char
Number
Integer
Float
Radian
Point

d. Magnitude. The next class to be discussed is Magnitude.
This is the class of all objects possessing a linear ordering.
All messages in this class are defined in terms of the basics,
'<!', '=', and '>'.

15

.........................

PR ISR i N et R S S R . S T ST W SR~ AT oL N AP R S R P Sl
LI LIPS . . . -
A

Wm" Baia®s et ate Ra e koanostan fuandieh Bt p et Mact Bee Sah s Aed it Ao S A

tN

Examples. Result.

Class Magnitude has several subclasses as seen above, and
Smalltalk automatically creates all members of the subclasses
shown.

(1) Char. Class Char contains the objects represent-
ing single ASCII characters. They are written by preceding the
character desired with a dollar sign, for example: S$Sa $B $4

$$

(2) Number. Class Number contains the two subclasses:
Integer and Float which represent integer and floating point
numbers respectively.

(3) Radian. Class Radian is used to represent radi-
ans. Only radians will respond to messages such as 'sin' and
'cos'. Numbers can be converted to radians by passing them the
message 'radians'. Similarly radians can be converted to numbers
by sending them the message 'asFloat'. Radians are normalized to
be between 0 and 2+*pi.

Examples Result
0.5236 radians sin 0.5
0.5 arcSin asFloat 0.5236

(4) Point. Class Point contains pairs of numbers
representing coordinates. They are represented by placing the
@ sign between two numbers.

Examples Result

(0@0) dist: (3@4) 5.0

(1e2) + (3@4) (4@e)
16

------- Exhibit 1. (Partial) =====--

A UndefinedObject
Symbol
Boolean

; Magnitude

K => Random

: Collection

e. Random. The class Random provides protocol for random

j number generation. Sending the message 'next' to a member of
) Random results in a Float between 0.0 and 1.0 randomly distri-
buted.
y Example Result

ran <- Random new

ran next 0.683
) ran next 0.466
1 ran next: 3 #(0.095 0.166 0.745)
K The first line creates 'ran' as a member of class Random. Since

no seed is specified, the default one will be used. The message
'new randomize' sent to Random will create an object with a ran-

dom seed. Sending the message 'next: 3' generates three random
numbers.
\
E)
. mmemee- Exhibit 1. (Partial) -------
' Object
Magnitude
J Random
; => Collection
o Bag
. Set
' KeyedCollection
- Dictionary
2 Smalltalk

SequenceableCollection

17

I-
A

o e
AR TR
2O SN N

S¢ f. Collection. This class represents groups of objects,
2{} such as Sets or Arrays. The different types of forms in class
;33 Collection are distinguished by several characteristics includ-
%'- ing:
'_ 1. whether the size of the collection is fixed or unbounded,

%

iﬁ 2. whether the collection is ordered,
B .r-' . . \ . \ .
oy 3. the methods for retrieving and inserting objects into the
DO collection.
A For example, an Array is a collection with a fixed size and an
j\ ordering indexed by integer keys.

o
yi« (1) Bag/Set. Bags and Sets are unbounded unordered
b collections, and their elements are not indexed by any keys.
. The difference between a Bag and a Set is that an element can
;; occur repeatedly in a Bag but not in a Set. For example, suppose
% *'

b is an object in class Bag containing four elements:

S Example result

- b print Bag(ball bat glove bat)

;; b asSet print Set(ball bat glove)

22
a8
'}\- y
R

o
. \ I:) ')
NS eee—e—- Exhibit 1. (Partial) ======-

;ﬂ Object

Y Collection

E Bag

ﬁ Set
s => KeyedCollection

) Dictionary

TR Smalltalk
£/ SequenceableCollection
U
<

a

(2) KeyedCollection. Elements in this collection are

- pairs of the form:
f:j key value
% In the case of class Array, the key is called the index and is
[' .
o
ol

*v'-' 1 8

usually an Integer. The message

at: key

will return the item in the collection having the given key. The
message

at: key put: value
is used to insert an item, and
removeKey: key
is used to delete an item.

(a) Dictionary. Class Dictionary is a subclass
of KeyedCollection. Both the key and value portions of an ele-
ment can be any object, although commonly the keys are instances
of Class Number or Symbol. In the example below, a Dictionary of
opposites called 'opp' is created.

Exanmple Result

opp <- Dictionary new

opp at: #hot put: #cold
opp at: #stop put: #go

opp at: #big put: #little

opp size 3
opp print Dictionary
(#hot @ #cold
#stop @ #go
#big @ #little)
opp at: #big #little

(1) Smalltalk. The class Smalltalk contains
one member ‘'smalltalk'. This object serves several functions.
First, it provides global communication between all objects.
Second, it 1is wused to modify various parameters used by the
Smalltalk system. Third, it can pass commands to the Unix shell.

19

anh

o

R

K

»‘.;A

& m=meee- Exhibit 1. (Partial) =--====--

Vg

el Object .
AR Collection

. Bag

iu'_ Set

ﬁ% : KeyedCollection

o Dictionary

gg Smalltalk

at => SequenceableCollection

e Interval

i LinkedList

\:,': File

‘) ArrayedCollection

Kt Array

e String

WA e oo
oy

g (b) SequenceableCollection. This class contains
h%‘ objects in KeyedCollection +that are indexed by integer keys.
A Since there is a definite fixed order for elements in this class,
— it 1is possible to refer to the first and last elements of an
:x object. Elements in this class also respond to the messages
Rl 'sort! which will return the object sorted from smallest to
:ta largest, and 'reversed' which will return the object with the
Lo elements in reverse order.

59

i (1) Interval. The members of this class
s represent sequences of numbers in an arithmetic sequence, either
}Qg ascending or descending.

b2

e Expression Meaning

P

R (1 to: 5) #(1 2 3 4 5)

12 (1 to: 5 by: 2) #(1 3 5)

o (5 to: 1 by: =-2) #(5 3 1)

Kl (.3 to: .7 by: .1) #(0.3 0.4 0.5 0.6 0.7)

;l"l

44y Used with the message 'do:', a control structure similar to "do"

T or "for" loops can be obtained. For example:

§ <

i .

! j (1 to: 10) do: [:X | X print]

Tg will print the integers 1 through 10.

&g (2) LinkedlList. Objects in this class
:&? represent stacks or queues. The objects have a fixed order, but
' no definite size. Elements can only be added or removed from the
%

20

ends, i.e. either the beginning or the end. An example of a
queue is a line of people in a bank. People enter the bank and
join the end of the line, and when their turn comes for service
they leave the beginning of the line. An example of a stack is a
pile of letters on a desk. When a new letter comes in, it goes

on the top of the pile, and letters are (usually) removed from
the top.

Message Meaning

addFirst: object the object is added to the
beginning of the collection

addLast: object the object is added to the
end of the collection

removeFirst remove the first element

removelast remove the last element

(3) File. The elements of class File are
stored on an external medium, typically a disk. Objects in this
class respond to messages such as:

‘open: filename'
‘read!’
‘write: object!’

------- Exhibit 1. (Partial) =---~---
Object
Collection
KeyedCollection
SequenceableCollection
Interval
LinkedList
File
=> ArrayedCollection
Array
String
(4) ArrayedCollection. The class Array-

edCollection contains two subclasses: Array, and String. The
difference between them is that while the values in class Array
can be any objects, in class String they must be from class Char.
Textually, arrays are represented by a pound sign preceding the
array, and strings are represented by placing single quotes
around the entire string.

21

o am e h s . Nt e e e e TN N G e e e S R R S G R
e e B T N T T e g e e e N e e e e e Y e T
N N L T ‘-..‘ v R O ST R > R YR “-\. RN,

84 Example Result
‘. TT/mEE R TEETESs
a <= #(10 12 14)
a size 3
b a at: 3 14
'S b <- 'string'
AN b size 6
) b at: 2 put: $p 'spring’
L
'1 ------- Exhibit 1. (Partial) =-==---
N .
) Object
3 Collection
) => Block
- Class
” Process
e
N
g. Block. Blocks are used in many control structures in
L~ the language. A block represents a deferred sequence of opera-
t} tions. Textually they are represented by square brackets sur-
Y rounding a sequence of Smalltalk expressions. Blocks are objects
{I in the system and can respond to messages. When a block is
LS encountered, the statements in the brackets are not executed
immediately, rather an object is created. The sequence of opera-
e tions that a block describes will be performed when the object
) receives the message 'value'. For example,
i Example Result
-+
f increment <- [index <~ index + 1]
ﬁ index <- 0
X increment value 1
1Y increment value 2
24
5 Blocks can be passed arguments with the message 'value: object'.
a For exanmple,
SN
N (:x | x + 3] value: 6
y will result in the value 6 being passed in for x. The result of
N the block will hence be 9. The expression ":x" appearing in the
J block says that "x" is the parameter in the block.
f'l'
N 22
s’
Y
&
AR o 0o o O STy o it ol NG e SR S T

SR AN S At dan e 8 e e Siarclle s~ ie: R Yl 2 el “nl

Pllatd

JQ h. Class. Users can define their own classes by sending
2,$ messages to Class. The message consists of the name of the new
oy class followed by its definition. For example, a new class
aa: called Probability has been defined for use in our simulation
e studies. The actual form of the class will be discussed in the
. next chapter, but the definition starts with

o

- Class Probability

o [<definition of this class>]

i. Process. Processes are created by the system or by
sending the message 'newProcess' or 'fork' to a block. They can
nd not be created directly by the user.

V. Classes and Messages

The previous chapter dealt with the hierarchy of predefined
: classes in SMALLTALK. This chapter starts by examining how new
K classes can be created, (specifically the class Probability that
o0y was introduced above), and then covers two pseudo-~variables, self
and super, and ends with an example illustrating how SMALLTALK
handles returned values.

Aty 4
U o

l. The Message 'new'

"0,
-’,:,
W Objects are the basic components of the Smalltalk system.
Messages allow interactions between the components of the system.
N Every object in Smalltalk is a member of a class. The members of
?d a class all have the same message interface: the class describes
{@ how to carry out the operations available through that interface.
o8
j Objects are created by sending messages to classes. Most
. classes respond to the message 'new' by creating a new member of
s; themselves. For example,
w
(S Array new: 5
[

¥ returns an object that is a member of class Array having 5 ele-
— ments. The object created can respond to the same messages as
any other member of class Array.

L e e,
Earex

2. Class Descriptions
The description of a class has five parts.

1. the name of the class

Yt

LSS

2. the class hierarchy

- -
LA A a0

Iy

23

S A Y

»
R

Ay,
20 v
"! *
F?f 3. the private memory of each element
sieiyt,
?{“: 4. the set of legal messages understood by the class, and
5
og¢
N 5. the operations performed when a legal message is received.
‘}\f Suppose one wants to define a class called Probability, which
viy. will be used to generate random numbers from various probability
{? distributions such as Normal and Uniform. The various probabil-
SN ity distributions will be subclasses of Probability as seen
e below.
‘ﬁﬁ Object
et Probability
N Uniform
a0 Normal
Binomial
ﬂ‘ Exponential
,’5'-..':’
o
th 3. Example: Class Probability
RS
The definition of Probability starts with:
S
,ﬁ:l Class Probability :Object
;Eﬁj Our new class will generate random numbers and pass them to an
L appropriate subclass. One 1local variable, say randnum, will be
needed to hold the random number generated. The 1list of local
o variables is placed between vertical bars.
4
:k?: Class Probability :0bject
e | randnum |
:ﬁ: Notice that spacing, tabs, and carriage returns may be used
K .- - freely to improve readability.
) o’ ,"
P The rest of the class definition is a block. The block con-
] tains pairs of the form:
~
‘345 message expressions
N
'Y
;ﬁi These pairs are separated by vertical bars.
Members of the class Probability will respond to two mes-
"4 sages: ‘'initialize' and ‘'next'. Members of class Probability
Yo must first receive the message 'initialize', which will create an
Foe object for random number generation. The message 'next' will
YO pass a random number to an appropriate subclass for processing.
W consider the complete definition of class Probability. (Recall
.‘\j
'y ::;
o 24
B
« Wy
2
o .
e e .n .

- KX _‘,,\‘\-.‘.-"‘-.-q\.‘-‘.‘--_v..‘- '\,,-.-'_..},\"-,,*L\ o _.; \ ~r‘- AT R A S L L N 0

.............

that since Probability is a subclass of Object, it inherits all
the messages defined in Object, so they need not be listed again
unless the user wishes to redefine themn.

Class Probability :Object

| randnum |
[initialize

randnum <- Random new.
| next

]

~self sample: randnum next.

As mentioned earlier, any member of Probability must first
receive the message 'initialize' which creates a new instance of

the random number generator (with default seed). That random

object will be called randnum. The message 'next', which will
pass a random number to a subclass, will be fully described
later. Note that the symbol '~' means return the object created
by this expression, and that 'self' refers to the object that
received the message (in this case the object that received the
message 'next'). The exact behavior of this message will become
evident when the subclass Uniform is presented.

4. Example: Class Uniform

Now that one has defined Probability, one can add subclasses
for various probability distributions. The easiest one is Uni-
form. This class will generate uniform random numbers on an
interval [a,b]. Since class Random generates uniform random
numbers on the interval (0,1], class Uniform need only ask Proba-
bility for such a number, say x, and then perform the transla-
tion:

a+ (x* (b=-a))

A member of class Uniform requires two 1local variables, a
and b, to hold the endpoints, and it will respond to two mes-

sages: 'from: start to: stop' and 'sample: x' The first will
store the endpoints a and b, and the second will ask Probability
for a random number and them perform the above translation. The

definition of Uniform follows.

25

)-u.'.f. 'f.'-‘.((e.rf .",.')"_" M T o T NN T
A "{s AN - ‘..n‘ _v!“»na,_’ "‘r.ﬁﬁ-\\. V' 't.f... #*\- ""ﬁ-

» o ®
.’(
(2"

N
‘ y
IN
e Class Uniform :Probability
1 | ab |
Enl [from: start to: stop
At (start < stop)
. ifTrue:
‘a : [a <- start.
e . b <- stop.]
}:;: ifFalse:
A [self error:
K "jllegal interval"
sy]
‘l *y
A5 | sample: x
R ~a+ (x+ (b-a)).
oy]
RO
e, 5. Messages to Uniform and Probability
S
{iﬁ At this point, two new classes have been defined. The class
b&{ definitions are templates specifying how members of the class
S will behave. To understand the behavior of a member of Uniform
. (and of Probability), an example will be traced through in
e detail. Suppose a study involves a task whose duration is Uni-
:i form on the interval (5 9].
5t
'$ﬂ{ First one creates a member of class Uniform:
PG
LR
u <- Uniform new
Y%
ﬂ? Next, one initializes:
‘zﬁ; u <- initialize
‘ Since class Uniform does not respond to the message 'initialize',
) but its superclass Probability does, the message 'initialize' is
‘qy{ sent to Probability. A random number generator 'randnum' will
~§; be created.
: J"?,
b L To generate uniform random numbers on the interval ([5 9],
perform the following:
KW
[u <= from: 5 to: 9
By V' ¥
b .
5#& The message 'from: start to: stop' would respond with start = 5
W and stop = 9. The test '(start < stop)' is either true or false,
and one of the two blocks is executed. Since 5 is less than 9,
o Uniform will store 5 and 9 into a and b respectively.
) i".‘
.¥5 The message
Y
2 u next
e
YR
ARRS
:::.:: 26
\}:%
}g{
e A

PN

]
L)
N

e

- - . S T T ey m e sl el el s e E—
\'!,.'J.‘\f B T O T O R e e I . I S TR Y e A FOTAT S S
) - . L A - P - - L .

.......

A R

Fon

will now generate a uniform random number in the interval [5 9].
Again, Uniform does not respond to the message 'next', but Proba-
bility does. So the expression

~ self sample: randnum next
is evaluated. The evaluation starts at the right with:
randnum next

Now randnum is a member of class Random, so sending it <the mes-
sage ‘'next' will result in a random Float in the interval [0 1].

This random object then becomes the argument for the message -

‘'sample:'. Thus the message:

sample: randnum next
is sent to 'self'. The pseudo-variable self refers to the origi-
nal receiver of the original message, which in this case is 'u'.
(Recall that the original message was ' u next '). In effect
then, the message becomes:

u sample: < a random object>
Now u will respond to this message by evaluating

Aa+ (X+ (b=-a))
The random object generated above will be substituted for x, and
a and b have been assigned values 5 and 9, so the overall effect
is to create a random object uniform on the interval [5 9].

Now that the object has been created, where does it go? The

'~' means to return the object generated by the expression, so
that the message

sample: x
in Uniform will return that uniform number. This object is then
the value of the expression

self sample: randnum next
in Probability. The '~' on that line returns the object from the
message next. (Note that if the two '~' had not been used, the
random object would have still been created, but not passed
back). Thus

u next
will generate the desired uniform random number.

Other examples of user defined classes will be presented
later.

27

..........................

") R G I L R R R PR R L O et et F T L ST I SCIIE RIS S
n Y ER S W W LN T L R R AR R T AR . .
0',\0!‘». uf‘st‘-!!\!. \ o, Lt B ."“."‘"' N AR Ry TN 'ni' RN -'-.\ o et S -

! ‘-"“?
ol n
M
\'ij 6. Pseudo-variables 'self' and 'super!
¥ ~*:‘
iﬁ{ Messages can be sent to the pseudo-variables self and super.
e When a message 1is sent to self, it will go to the original
. receiver of the original message. Consider the following example
" in which two classes, One and Two, are defined. Class Two is a
M subclass of One.
[
f%& Class One :0Object
v [test
.- 1 print.
}q | pass
oo self test.
LR)
B
o Class Two :One
. [test
Y 2 print.
N]
)',;J
%
G One creates members of each class.
{}i memberl <- One new
o member2 <- TwWO new
. Then messages are sent to the new objects.
:i Expression Result
- memberl test 1
:q member2 test 2
SRS
1l
o2 memberl pass 1
o, member2 pass 2
X 2
s Sending the message 'test' to either memberl or member2 will
f: print a 'l' or a '2' as one would expect. Sending the message
é: 'pass' to memberl will cause the expression
\
~E: self test
ﬁ}, to be evaluated. The variable self refers to memberl, so the
Jj message 'test' is sent to memberl and a 'l' is printed. However,
o when 'pass' is sent to member2, since members of Class Two do pot
.mj respond to that message, it goes instead to its superclass, which
W is class One. Again, the expression
=~
JAS
" 28
L 41:
N
L8

...........

T e M L e e R R T A T A R R T e N T S K" e P T T e T n R R ol
ALy - R R / .rn_\. ~ Yk " * LY Nt M S
. Lot b "'7 MOGTNE VSRR, h"'n'»’- Y] t.9| ,|.|.!'..,I AT Yy B A

m Mak Sha ala ahi-adAeai aaaaliduideat ot fan dim dak Aok get Aap Aot Sk R
.

self test

is evaluated, but this time the variable self refers to the ori-
ginal receiver, member2. Thus a '2' is printed.

The variable super refers to the superclass of the class
containing the line in which super was used.

7. Returned Values N

When an object receives a message, its class description
will tell it what operations to perform. When it finishes pro-
cessing the message, it will always return some object. The
default value is the name of the receiver. If some other object
is needed, then one or more return expressions '~' should be
included in the class description. For example,

Class A
(compute

]

Class B
[compute

3+4
~3+4 :
] .
One creates members of both classes,

a <= A new
b <= B new R

and send the message 'compute' to each.)

Example Result !
a compute a
b compute 7

When object 'a' gets the message 'compute', it calculates '7!',

but by default returns its name.

29

‘b 5 G54,
A .

VI. Simulation Example

1. Introduction

In 1984, the US Army Quartermaster Schocl commissioned the
Ballistics Research Laboratory (BRL) to conduct a Graves Regis-
tration (GRREG) study. The thrust of this study was to evaluate
the GRREG requirements of the future battlefield and analyze the
ability of the GRREG system to meet these requirements. The study
provided 1) a base line analysis of the ability of the present
system to handle conventional and contaminated remains, and 2) an
analysis of several alternatives, including changes in force
structure, equipment, and GRREG procedures. The recommendations
of the study are intended to provide the Logistics Community a
direction for changes in graves registration doctrine, pro-
cedures, and organizations. A large computer simulation was
written in Smalltalk in order to perform the analysis.

2. Background of Graves Registration

a. Description of Service. The Graves Registration Program
provides for essential search, recovery, collection, and disposi-
tion of the remains of deceased US, allied and enemy personnel in
an area of conflict where the prompt return of remains to the
continental United States 1is not possible. Disposition of
remains, according to current doctrine, is by burial in temporary
military cemeteries. The Graves Registration Program is a logis-
tics function under the auspices of the Quartermaster Corps. 1In
a theater of operation, graves registration collection points are
established in the Brigade Support Area. Additional collection
points are established in the Division and Corps rear areas. The
temporary military cemetery is established in the COMMZ or Corps
rear. Current doctrine regquires that units transport the remains
of deceased soldiers to the nearest collection point. From there,
graves registration personnel tentatively identify the remains
and evacuate them, through intermediate collection points to the
temporary cemetery. At the cemetery, operated by a Graves Regis-
tration Company, personnel remove personal effects from the
remains for shipment to next of kin, and bury the remains.

The US Army Quartermaster Corps has responsibility for the
graves registration program. This responsibility includes the
organization of units to carry out graves registration functions,
acquisition and training of MOS 57F (Graves Registration Special-
ist) personnel, the development of requirements for new items of
equipment to support graves registration operations, and the
development of graves registration doctrine.

The graves registration program involves four major func-
tional areas. They are search and recovery, identification,
burial and personal effects processing. All of these functions
are carried out in the theater of operations. Personal effects
are shipped to next of kin at the earliest possible time.

30

Graves registration personnel may carry out search and
recovery missions in cases where a unit is unable to recover
their dead, where a unit has been forced to bury remains in a
hasty/temporary grave site, where an aircraft has been downed, to
police the battlefield of enemy dead, or in any situation where
other units are unable to recover the remains of U.S. servicemen
from an area of operations. Search and recovery missions are time
consuming and labor intensive. These nmissions sometimes force
elements of a graves registration unit to operate over large geo-
graphical areas.

The identification function is carried out by graves regis-
tration personnel at a recovery site, a graves registration col-
lection point or at a temporary cemetery. Every effort is made
to completely identify remains as soon after death and as close

to the place of death as possible. Experience has shown that
timely identification 1is a significant factor in reducing the
number of unknowns in a conflict. All tasks associated with

documenting identifications and reporting this information will
be considered as part of the identification function in this
analysis.

All remains processed as part of a graves registration pro-
gram are buried in the theater of operations in temporary mili-
tary cemeteries. Burial is either in individually marked graves
or a common grave if mass burial procedures are in effect. Under
the graves registration program all cemeteries and grave sites in
the theater of operations are considered temporary. The program
calls for the eventual return of all remains to next of kin or
military cemeteries in the United States unless a permanent mili-
tary cemetery is authorized by specific legislation. Remains in
hasty/temporary graves in the theater of operations are consoli-
dated in temporary military cemeteries if possible.

Current graves registration doctrine and procedures are gen-
eral in nature and oriented toward the conventional environments
of past conflicts. Little attempt has been made in recent years
to capitalize on current technology for identifying, reporting
and processing remains.

During peacetime, the graves registration system is not
used. Peacetime manpower and fiscal constraints have forced the
Army to place graves registration units in the Reserve Component
and graves registration elements have been removed from many
active unit tables of organization and equipment (TOE). Peacetime
deaths of servicemen are handled by the current death program,
which emphasizes civilian mortuary services and contract support.
Because of this, very few graves registration personnel are in
the active force, graves registration procedures have not been
kept current and problems posed by future battlefield environ-
ments have not been addressed.

b. Organizations and Equipment. Graves registration assets
are organized into units ranging in size from the GRREG Battalion
to GRREG Team Augmentations. At the lowest echelon, graves regis-
tration support is provided by teams, sections and platoons
attached to supply and service companies or field service com-
panies. These GRREG elements are organized into collection points
that provide for search, recovery, initial identification and
evacuation of remains. These collection points are not organized
or equipped to perform burial. All graves registration support
to divisions is provided by augmentation to the divisional Supply
and Service Company. Divisional GRREG capability is strictly a
wartime augmentation.

The Graves Registration Company carries out the final iden-~
tification of remains and operates the temporary military
cemetery where remains are buried. The Cemetery Company is also
organized to perform search and recovery missions and to operate
a collection point. Personal effects are also processed by the
Cemetery Company prior to being sent to the personal effects
depot for temporary storage and shipment to legal recipients.

c. Doctrine. Current doctrine for graves registration |is
illustrated by the flow of remains shown in Figure 1. Units have
the responsibility of evacuating remains to the appropriate
graves registration collection point. This evacuation is normally
accomplished by using organic unit transportation assets. How-
ever, any available transportation may be utilized. Evacuation
from teams, squads, platoons and companies may be routed through
the appropriate battalion headquarters. Remains are unloaded at
each echelon in an effort to keep organic unit transportation
assets within a units' area of operation. Much of the current
GRREG organization and doctrine is dictated by transportation
requirements.

Any transportation assets may be used to evacuate remains
with the exception of ration trucks. From the losing unit, tran-
sportation will normally be organic company or battalion vehicles
and aircraft. Once the remains are in graves registration chan-
nels, evacuation of remains becomes the responsibility of the
graves registration unit. All graves registration units have
authorized organic vehicles which may be used for evacuation of
remains; however, it must be kept in mind that these vehicles are
also required to carry out search and rescue missions, and per-
form unit administrative tasks. Evacuation of remains within
graves registration channels, therefore, depends upon requests
for nonorganic transportation and the availability of back haul

transportation assets. Doctrine provides guidelines for the
transportation of remains within the theater. Remains must be
covered at all times while being transported. Remains must be

escorted while being evacuated to insure that personal effects
are safeguarded and that the remains receive proper treatment
while enroute. The vehicle transporting remains must be covered
at all times and remains inside the vehicle should not touch each

32

other. This precludes stacking remains one on top of each other
in a vehicle and limits the number of remains that can be tran-
sported 1in one vehicle. Utilizing litters the maximum number of
remains that can be transported in a 2 and 1/2 ton cargo truck
under the constraints of this doctrine is 24.

Doctrine states that identification should be carried out as
soon as possible after death and as close to the scene of death
as possible. Remains recovered by GRREG personnel on a search
and recovery mission are identified at the recovery site if pos-
sible. Early identification is felt to be the key to eliminating
unknowns. Various identification media are used and doctrine
prescribes what combinations are acceptable for positive identif-
ication. It must be remembered, however, that identification
media which are used as sole source evidence of identification
may be wrong. For this reason, current doctrine stresses the use
of multiple identification sources to confirm the identity of
remains.

Burial is the only accepted disposition method for remains
under current graves registration doctrine. Remains are buried
in individually marked graves at consolidated temporary military
cemeteries in the theater of operations. The intent of current
GRREG doctrine is to discourage the use of small scattered
cemeteries and consolidate the burial of remains as much as pos-
sible. Doctrine prohibits the use of isolated/hasty graves
unless their use is absolutely unavoidable e.g. where a unit is
unable to evacuate their dead and are being forced to move. Con-
solidated cemeteries are required by doctrine for many reasons.
Consolidation makes it easier to carry out the return of remains
program and the organization and basis of allocation of graves
registration companies makes it impossible to have decentralized
burial within a theater of operations. Consolidation also makes
the care and maintenance of cemeteries easier, limits the possi-
bilities that a burial site could be lost and makes it less
likely that a cemetery would fall into enemy hands particularly
since current doctrine places temporary military cemeteries in
the COMMZ.

33

COMM Z

cp

L .

." “1

i @

e COMM 2 é
Y.

o Figure 1. Top Level Network

NN 34

VII. GRREG Queuing Network

1. Introduction

The graves registration organizations in a Corps are best
described as a network of queues where remains await processing.
These queues form networks, where the output of one becomes the
input of another. The network is rather complicated: consisting
of several hundred individual queues that are interconnected
either in series or in parallel. The network will be described
in three levels of detail, with the basic level consisting of the
individual queues, the intermediate level consisting of the three
types of collecting points (initial, intermediate, cemetery), and
the top 1level showing the flow from one collecting point to
another. Figure 1 illustrates the queues and networks in the
corps slice of the theater at this top level. Except for the
remains of personnel who die in the COMMZ and are brought
directly to the cemetery for processing, all remains in the
theater will pass through a minimum of two collecting points
prior to burial.

a. Definitions. The GRREG queuing network forms a directed
connected graph of arcs and nodes, (see Figure 2), with tokens
passed along the arcs through the nodes. The tokens represent
bodies or trucks, and each node represents a task to be performed
on tokens and a queue where the tokens wait their turn for pro-
cessing. The meaning of these terms depends on the level of
detail in the network. At the top 1level, the nodes (circles)
represent the «collecting points, the arcs (lines) represent the
connecting roads, and the tokens represent the trucks carrying
bodies. At the intermediate level, the nodes represent indivi-
dual tasks from the basic task list, the arcs represent movement
from one task to the next, and the tokens represent the indivi-
dual bodies at the collecting point.

Tokens are created by a generator (source) node. Each gen-
erator node has one arc leading to a task node's queue. Here the
tokens wait their turn for processing. Examples of process
(task) nodes are unloading trucks and takiny finger prints.
After the processing is completed the token travels on an arc to
the next queue,. This pattern is repeated until a final (sink)
node is reached. An example of a sink node 1is a temporary
cemetery plot. The sink node's queues hold tokens that represent
the throughput of the GRREG services.

b. Network Structure. As mentioned before, the network can
be viewed at three different levels. The description of the
GRREG network will start at the top level with some basic defini-
tions; then move to the intermediate level and a detailed discus-
sion of the three types of collecting points; and conclude at the
basic level with an examination of the various queue parameters.

35

—...-- -
; Ty
NOAOAES

-
-
L)

e

5
-

-
.
L
-,

e

»
X

»

N4
a

Fr

~
-

55
a8 o W

2. Top Level Network

The top level nodes are the collection points:

1. 1Initial Collecting Point [CP)
2. Intermediate Collecting Point [IP)
3. Temporary Cemetery [TC]

apd the low level network defines these nodes in more detail. A
simple high level network example is shown below.

Figure 2. Example High Level Network

Each generator ([gen]) creates a work load of tokens, which
consists of trucks filled with a random number of bodies. These
tokens pass through collection point nodes on trucks until they

e ity . . 3 . N . - ~ B
Y ‘x’,"{'“'- e “ rﬁ_(.‘. ,-’ ,\ " AN .'p RN N '_\. ”ﬁ.\,‘\.) "»- .-‘,\"\.. e

P I T Py Y P o e W ¥ Y I W= vy~ v~ w =

reach the Temporary Cemetery node ([tc]).
3. Intermediate Level Networks

The intermediate level networks represent the three types of
collecting points (initial, intermediate, temporary cemetery).
See Figures 3, 4, and 5. Here each token represents a truck full
of bodies. These trucks start in the field. After the drive
from the pick up point the trucks line up at the in-truck-queue.
Here a pool of workers is assigned the task of unloading the
truck. This pool contains several workers, with one or more
workers on the truck, and the remainder (in pairs) on the ground
to carry the bodies to the processing location. Here the bodies
receive an evacuation number from one of the workers. This body -
is not physically moved, but is added to the the identification
and personal effects queue.

Each collection point node has a limited capability to do
processing, which is a function of the number of workers assigned
to the collection point. Each task node regquires one or more
workers to perform the given task. When multiple workers are
assigned to a task node, task characteristics determine whether
the work 1is performed in parallel or in series. For example,
tasks like loading (unloading) trucks need workers in pairs for
each body to be loaded (unloaded) at one time, plus one worker in
the truck. Tasks like identification require only one worker per
body, while other tasks can only be done by at most one worker at
any given time. An example of the latter is filling out the con-
voy list.

Most of the arcs in the collection points and the temporary
cemeteries are simple and represent serial task queues. The
exceptions are the branching, joining, and forking of arcs at
nodes, to be explained below.

Branching occurs when a token can be put on one of several
queues after service. This happens, for example, after the bcdy
has received an evacuation numher. If the body has already been
processed through an initial ccllecting point, then the next task
is to check the records to be sure there are no errors in pro-
cessing up to this point. However, if the body has not been pro-
cessed then the complete identification process must be carried
out.

Forking occurs when a token is split and put on two or more
queues. An example of this 1is can be seen at the temporary
cemetery, where the holes in the ground are prepared while the
body goes through final processing.

Joining occurs when a node waits for all parts of a forked
token to arrive before processing continues. After the above
holes and the final processing are completed, the body is ready
for placing in the hole.

RS
5 A I
e,

)

23

o
.

o0

R

g
“Jll'

The nodes at the end of the arcs represent tasks to be per-
formed by workers. These nodes consist of a queue of incoming
tokens (these tokens are either trucks or bodies). This is where
the tokens wait for a turn to be processed. These nodes also
require one or more workers to do the processing to the bodies.
Some task nodes can have more than one worker at a time (e.g. n
workers can perform the ID task on n bodies), while other tasks
are restricted to one worker (e.g. the Evac task), thus only one
body at a time. The hardest tasks for worker allocation are the
loading and unloading of the trucks, as described above, which
consume two workers per body and one or more extra workers on the
truck.

The actual processing of bodies is done at the 1level of
tasks. This requires that needed resources be allocated to the
task for specified time period, and then released back to the
system for other tasks to consume.

To illustrate in more detail, the following are needed by
the simulation to process a task.

|

a body

2. one or more workers to be consumed while the body is being
processed.

3. some storage for the body and the worker (this holds the
resources until the task is completed).

4. the limits on the number of workers required (as above).

5. a delay time for the execution of the task (this 1is the
amount of time needed to complete the task).

6. arcs for the disposition of the body for its next task.

Note that 1) and 2) are consumable resources for the simula-
tion, 3) can be forgotten until there 1is no more computer
resources, and 4), 5), and 6) are constraints that differentiate
the tasks.

The way these work is as follows. For each collection point
there 1is a fixed set of workers. These workers are allocated to
each task that meets the above needs for processing. When a task
is ready to run, the body and the worker(s) are stored in a task
object for storage in the time queue. After the delay time is
consumed by the simulation, the task is run to free Iits
resources. These are:

38

1. the body, which is placed on the next task's input queue.

2. the worker(s), which can get another body for this task or
start a new kind of task.

The task list for an initial collecting point 1is given in
Table 1. The source code for those tasks is given in Exhibit 2.
Each task contains 6 methods (startUpTask, max, min, taskTime,
prefix:, and next). The startUpTask method creates an instance
and returns the name of the individual task. The methods max and
min return the maximum and minimum number of workers for that

task, while taskTime returns the average time required for the

task. Note that prefix: echelon will return a string containing
the echelon level and the name of the task that is used for
printed reports. The message next informs the scheduler what the
worker is doing, and informs the body that it has left the task
queue and is now being processed.

4. Parameters for Basic Level Queues

The behavior of an individual queue 1is controlled by the
choices made for a small set of parameters. These parameters

will be examined as they apply to the various queues in the net-
work.

a. Arrival Parameters. The calling population (casualty
workload) for the GRREG model is finite; limited by the intensity
and nature of the battle and the troop population. The simula-
tion was run well past the last battle (i.e. no arrivals) to
determine the time needed to work off the backlog.

Some gqueues experienced only bulk arrivals, (occurring
whenever trucks arrived with bodies). Other queues had no bulk
arrivals, and some had both bulk and single arrivals.

The arrival rate for bulk arrivals changed daily and
depended upon battle conditions and troop populations in the
vicinity. For some queues, the arrival rate was the sum of the
departure (throughput) rates of one or more previous queues in
the chain.

b. 8ervice Parameters. Each queue in the network
represents one of the tasks from the basic task list for the col-
lection point. (See tables 1, 2, and 3). The service times for
each task are independent and normally distributed. The number
of servers (MOS 57F workers) at each service center changes
throughout the simulation. A 'worker to task' scheduler assigns
workers to individual tasks based on several factors including
task priority and queue backlog. The worker stays only until
task completion, at which time he is reassigned to either the
same task or possible another task. Thus tasks may get no work-
ers assigned, or may get one or more workers.

39

‘V‘ 5' $¢"

WV T

C. Queue Discipline. Queue discipline is first come, first
served, and queue capacity is assumed to be infinite. However,
for some excursions, balking was allowed at the truck arrival
queues whenever the backlog reached a critical peak. The trucks
would then proceed to the next higher echelon collecting point
and try to join the input queue.

TABLE 1. Task List Initial Collecting Point

Task Time Task
per Remain
(min)
2 Unload remains
5 Assign an evac number and record
55 Check ID tags, field medical card,

prepare statement of recognition,
record of recovery (if necessary),
inventory PE and fingerprint

10 Place remains, documents and PE
in human remains pouch and move
to holding area

5 Prepare convoy list
5 Miscellaneous record keeping
2 Load on transportation

40

P

P

TR

TABLE 2. Task List Intermediate Collecting Point

Task Time Task
per Remain
(min)
- 2 Unload remains
5 Assign evac number and record
) 25 Compare remains with documentation

and fingerprint

5 Move remains to holding area

5 Record on convoy list

2 Load remains on transportation
41

‘ ALRTN ._'.\;...;-\-
456 NS R AT A

R S
R e Ny "N

v e Y - 5 PRV R Ry =)

TABLE 3. Task List Temporary Cemetery

Task Time
per Remain
(min)

15
20

15

30

10

10
10

20

30

15

Task

Unload remains

Check evac number and PE seal

Move to processing area

Assign processing number and re ->rd

Compare remains and PE with documentation
Remove clothing and examine

Fingerprint remains

Perform detailed ID; consists of anatomical,
dental, and/or skeletal charting,
photography and comparison of evidence with
records; assumed that this 30 minutes is the
time for all types of ID cases averaged over
every remain processed

Shroud remains

Prepare plates, tags and attach

Move remains to holding area

Dig grave site (mechanical digging)

Move remains to grave site

Prepare internment and plot records
and 3x5 card

Place remains in grave and cover (manual)

Prepare and ship PE

42

"-/“,‘u‘.' AR A A A
SN, .*ﬁﬁn‘.h !N *' o 5! ,'ﬁ‘

inTruck Q

unfoadQ

check ID

rd exit

outTruckQ

Figure 3. 1Initial Collecting Point Task Network

43

N Y O A

-~ S T Sy S ‘
et SAGEY L S LA

B O
i, W AT e Bt E i
o A o B g M i N A M g N My o X Mol N 0

“" -"‘- «;1’ -

!

"\‘:’-

g

SR
i. W
A

0

e

~y oy ek, g
3 Tk -
e

o e g

A
-

> J,"";:'-":'(‘:-‘::J'-'

\ i

inTruckQ exit

if body has not been
through CP

checkID

compare ID

outTruckQ exit

Figure 4. Intermediate Collecting Point Task Network

44

N R R SR . e Lttt e
A, T X . RSO A

unloadQ exit

if body has been
through CPor IP

(digGrave)

disrobe

fingerPrint

detaillID

movetoSite

if grave site
not ready
notDugQ

plotRecords

Figure 5. Temporary Cemetery Task Network

45

Exhibit 2. Source Code for Tasks

b # [startUpTask
Kt # | max number of workers allowed.
‘33§ # | min number of workers required for one body.
e # | taskTime return the average time required.
i # | prefix: echelon
B # | next
LY. "
b
;:’,‘:
oo
ot" . .
i et If there is a truck unload it."
oo Class Unloader :Task
(A ¥ v
ten [startUpTask
D, ~self.
P?.] max "number of workers allowed."
EX M A7 .
" [min "number of workers required for one body."
. \‘:'j ~2.
‘Ij | taskTime "return the average time required."
< ~2.
o | prefix: echelon
" ~self name: (echelon, 'Unload')
o B, W e o == "
o | next
P self setWorking.
N self body: (self unloadTruck: self).
g]
&
.Ef? e If there is a truck load it."
SN Class Loader :Task
£+ [startUpTask
& ~self.
a0 | prefix: echelon
SO ~self name: (echelon, 'Load')
‘M | max "number of workers allowed."
g '\';‘.' ~6.,
e | min "number of workers required for one body."
D Tl A 2 .
o | taskTime "return the average time required."
e ~2.
Y o ! next
fiﬁ} self setWorking.
-.;ﬁ self body: (self loadTruck: self).
h k
Vad B
AL
",
i
o 45
4yl
{5
\ W "n
ﬁﬂ

RETEER Y- " A) e T TR y e . "w N T T R M Sy L T
: . : MY) o N ‘ I AN Ty '
R o R O O A AR bt Lo ol X+ Lo C NS RO o P T Lt T 40 e TN % et S e];' NS

‘-’0.\..

---------------- Process to assign evacuation numbers. "
Class Evac :Task

[startUpTask

~self.
| max "number of workers allowed."
All
I min "number of workers required for one body."
~l.
| taskTime "return the average time required.”
~5.

| prefix: echelon
~self name: (echelon, 'Evac')
| next
self setWorking.
self body: (self procEvac: self).
self reSchedule: self.

----------- See who this is and process his personal effects."
Class Id :Task

[startUpTask

~self,
| max "number of workers allowed."
~999,
| min "number of workers required for one body."
~1.
| taskTime "return the average time required®
~40.

| taskClock | c |
c super taskClock.
(self body) fingerPrint ifTrue: [c incMin: 15].
~C.
| prefix: echelon
~self name: (echelon, 'Id')
| next
self setWorking.
self body: (self procId: self).
self reSchedule: self.

Wemem Pack into transport bag with PE and move to load area."
Class Pack :Task
({ startUpTask
~self.
| max "number of workers allowed."
~999.
| min "number of workers required for one body."

47

- PRSP ICER PR F O DL . < N R I AT 0 A N
)J'&(».)“"& “*z AT Ot :‘.:- e ..)',J.rk”\' "‘"‘\q_“‘“\""\ . .)'4"’-\"')")\. o

MR B

.....

- W

N -‘-f\.

PErOvTeT o BT OV OV T O P T e

el ~2.
e | taskTime "return the average time required."
) A
‘52 ~ *1o0.
1) | prefix: echelon
i ~self name: (echelon, 'Pack')
BN | next
R self setWorking.
e self body: (self procPack: self).
;'ﬁg self reSchedule: self.
Q5]
tolig
£
A
2k e L LT LT E Add him to the convoy list."
NQ Class Dd :Task
WA [startUpTask
~self.

ﬁﬁv | max "number of workers allowed."

(SN Alo
,zﬁﬁ | min "number of workers required for one body."
: -‘-: Alo
Tt | taskTime "return the average time required."

~5.

;Qn | prefix: echelon
9 - ~self name: (echelon, 'D4‘)
i < | next
Tl self setWorking.
e self body: (self procDd: self).
- self reSchedule: self.
RS]
K
'\vj;’*
k2

l”l

e il It DL P Process other overhead items required."

?\-’.;' Class Misc :Task
: r:’ [startUpTask

i ~self.
gﬂ; | max "number of workers allowed."
2 ~999,
. | min "number of workers required for one body."
Mo AL,
%*ﬁi | taskTime "return the average time required."
e 5.
,*3 | prefix: echelon
B ~self name: (echelon, 'Misc')
- | next)

oo self setWorking.
&jﬁ self body: (self procMisc: self).
‘;14 self reSchedule: self.

5]
oot
[ro
130y
Sk 48

e
A

RS S A N N e T WL I L UL IO
e S ._1_-»1;..“{_.‘:. ,’{'.‘_ - \‘;‘-

O N A T e, £ T g
J (] 4 p LA Y o
A AL AR I W N AT o A%

e e

- - -

‘o -~

-y e W e o

\-}\

,.
-,

VIII. Code Details

In this chapter, parts of the code will be examined in
greater detail. The first part covers the details of starting the
simulation. The second part covers the concept of global infor-
mation in the simulation. The last part walks through the various
stages in the life of a worker, including creating a worker,
assigning a task, performing a task, and returning to idle
status.

1. Running the Simulation

The simulation is run with two commands. The first is:
S <- Simulation new startUp.

which will make an instance of the Simulation and pass in the
message startiUp. This will in turn pass the message startUp to
each object in the simulation that needs to be created at time
zero. Each startUp will initialize the variables and the queues
needed for the run, along with scheduling objects to perform
operations in the future.

Each object that represents a task that consumes time is
added to the event-gqueue. This is called 'scheduling an event'.
Each object scheduled is placed on the event-queue. The event-
gqueue 1is a sorted list. The records of the list are the time-
to-run, which is the sort key, and the object to run.

The second command is:
S process.

This removes the first object from the event-queue and runs it.
In normal operation the message 'process' returns true as long as
there are objects scheduled to do tasks. Also the run can be
limited by the number of events run. This is the way the simula-
tion is run until there is an internal stop condition or 50
events have occurred:

[(s process) and: [(n<- n+l) < 50]] whileTrue: []

Each task is run in three phases. In the first phase the
task gets the resources required for the task. The second phase
is the scheduling where the task is suspended for the time
required to complete the task. The last phase is to pass the
message 'next' to the object. The message 'next' causes the

49

T T At N e R LY L N T N N R, A I T T L IS [N
R A T e e € Yl OO A ST £ e S S s Lt NN

Ald) : B)

e

resources to be released by the object completing a task.

>,
) 2. Global Variables

One of the first things done in starting the Simulation is
to make an instance of the Class GlobalData. This in turn makes

. an instance of the superClass UserData. Both are saved in the
W Class UserAccess, which is a super class of each SimulationOb-
A ject. The result is two objects that are global to the Simula-
b tion. These two Classes are used to store variables that are

accessed through the super-class.

Consider a simple example to count some kind of event.

Class UsedData
| counter |

pre [new
- counter <- 0;
:$¢ | count
~ counter <- counter + n
n | report

'‘counter = ', (counter printString) print.

}3: Class UserAccess
N | userData |
:;< [udSet:

userData <- ud

| count

o]

userData count.

Class Object :UserAccess

[next
self count

; J

N Class Main

- [main |theUd objl obj2|

>0 theUd <~ UserData new.

ﬁ} objl <- Object new udSet: theUd.
X obj2 <~ Object new udSet: theUd.
: 5 timesRepeat: [objl next)
o4 10 timesRepeat: [obj2 next] .
zj theUd report.

The result of running 'Main new main' would be to print the
s number of times the Class Object was passed the message 'next'.
x, The way this works is that both of the super objects of objl and
‘ obj2 have the value of the variable ud set to the same instance
of the Class UserData. Thus ti.ere is only one copy of the vari-
able counter accessible from all the objects.

50

-,

M A R A ® o Ta Y % m a .
‘\-'_*._(.\{\J‘-._r\,.,»)\). NS "o

-

e a . . e aEA aad bmadia obs o oL ac oih oS Tow

The Hierarchy of Classes is:

\)
R Probability
N Uniform

e UserData

" GlobalData

{ UserAccess

oy Identity

o . CpTrucks

. IntermediatePoint
Q. CollectionPoint
*% Truck

LY GenTruck

he) Body

A IdleTask

. Environment
fj CollectionClass
e Worker
.\ Task
5 DemonTask
™ Move

Ckld

" Misc

& Dd

8 Pack

2} Id

. Evac

, Loader
:1 Unloader

N Note that all of the objects are sub-Classes of UserAccess. This
t allows the global variables in UserData to be accessed through
UserAccess from the one copy of UserData passed into each object

gx at the time of object creation.

hat 3. The Life of a Worker

o

) In this last section, parts of the code relating to the life
of a worker will be examined in greater detail. A listing of the

N complete source code is given in Appendix A, but for the reader's

B convenience, relevant parts will be reproduced below as needed

%. with the discussion. The various stages in the life of a worker

4 to be discussed are: creating a worker, assigning a task, per-

"‘] L] 1]

el . forming a task, and returning to idle status.

T; a. Start Up. Workers are created and "live" in the class

jg IdleTask. The scheduler takes an idle worker and assigns him to

o a task. When the task is cver, the worker 1is returned to the

o idle state, to await reassignment to another task. When the

b simulation starts, the message 'startUp' is sent to the class

K

)

?‘ 51

L)

N

%At a e ‘,‘\‘ T e, -~ N ‘_-‘.-_'- "‘. . R o R ..-- At .._‘- “ At “-..-' R ‘.-\...:.-{.- N
‘ ; 4 ! * 3 3 ! I n)

'ﬁ. Tare 1-:\ ot Y y W . ‘1_\
2> Wy !"i.é"‘b “'!l'\,‘\‘h ', a‘l‘t AY, t’:\!’h,\o‘l‘t l‘!l L

IdleTask, (see the previous section), and the number of workers
in the collection point is passed on the message 'personnel:' as
shown below.

Class IdleTask :Identity
llData"
| cp idlers timesIdle maxIdle allWorkers |

(

| startUp
idlers <- List new.
allWorkers <= List new.

maxIdle <~ 12.
timesIdle <- 0.
self start.

| setCP: cpoint
cp <= cpoint

| personnel: n
n timesRepeat: [
allWorkers add: (
idlers add: ((cp create: Worker) setCP:cp))].

As shown above, two lists of workers are generated. The workers
on the ‘'idlers' 1list are removed as each worker is assigned a
task. The 'allWorkers' is saved intact for listing the status of
the workers. The 'startUp' message is passed from the command

s <= Simulation new startUp

discussed in the previous section.

b. 8cheduling Tasks. After the IdleTask is created, it 1is
scheduled by the message 'scheduleNow' in the class Collection-
Point, as seen below.

Class CollectionPoint :CpTrucks
(((self iTask: (self create: IdleTask)) setCP: self
) personnel: pers
) scheduleNow.

When the IdleTask is scheduled, the message 'next' is passed to
the IdleTask as shown below.

52

.ot

KRN L

LR PR TR YL ER PR SAVCELC N wgh - RS R R R A MU RS I Rl A N O
s e A ALY N AT WA RN " i T A3
oL LTSt DI L S SK A N ﬁf’ .,,o A .“».,..‘QO-M' i

Ufh i)

Class IdleTask :Identity
| next | re |
timesIdle <- timesIdle + 1.
rt <- cp reTask: idlers.
rt ifTrue: [timesIdle <- 0. }].
timesIdle >= maxIdle ifTrue: [
cp stop.
maxIdle <~ 0.

Here the IdleTask will terminate the simulation (c.f. "cp stop")
if there 1is no more work to be done. This is determined by the
returned value of 'retask:'. In the CollectionPoint Class
'reTask:' tries to find work for the idle workers. The scheduler
will make 12 (c.f. maxIdle <~ 12) attempts to schedule idle
workers.

When a worker finishes a task he looks for work. If there
is no work to be done then he is idle. This worker will then add
himself to the 'idlers' list by passing the IdleTask the message
'idleWorker:'. This is illustrated in the following code.

Class CpTrucks :Identity
iTask idleWorker: worker.

Class IdleTask :Identity
| idleWorker: w
w sleeping ifFalse: [
(idlers isEmpty and:
[maxIdle > 0]) ifTrue: [
self schedule:5
].
w setIdle.
idlers add: w.

1.

It is possible to have a worker that has either worked into the
night or worked a full work day of 7.5 hours. These workers are
scheduled to wake up in the morning. If they are not asleep, and
the ‘'idlers' 1list 1is empty, then the idleTask is not on the
‘eventQueue'. This requires that the IdleTask be scheduled so
that the workers can be given tasks. Then each worker is marked
as Idle and added to the list of 'Idlers' for tasking at the
scheduled time, as shown above.

53
N AT A A T8 T Y R e LA e T L N L
o N s AP A I IS N .. - <
ATHCRANLH SRS * LT, W50 -~ AR ATV ~

From above, one sees the IdleTask being scheduled by the
message 'reTask:'. Here each worker is removed from the idlers
list and given to the CollectionPoint Class withh the message
'taskSelect:!'. If any worker is given a task, then the returned
value is true. This informs the IdleTask not to terminate. Any
workers that remain, after all the doable tasks are assigned
workers, are idle and are passed back to the IdleTask (shown
below as iTask).

Class CpTrucks :Identity
---------------- This list of workers needs to find work."
| reTask ": helpers"

helpers notNil ifTrue: [self reTask: helpers]

| reTask: list | 1 val |
val <- false.
1l <- List new.
[list isEmpty] whileFalse:
[1 add: (list remove)].
"give them tasks."
[1 isEmpty not and:
[(self taskSelect: (1 remove))
]] whileTrue: [val <- true].
"no more jobs case."
(1 isEmpty)JwhileFalse:[iTask idleWorker: (1l remove)].
~val

Class CollectionPoint :CpTrucks

| taskSelect: worker

(self selectIdle: worker) ifTrue: [~true].
(self selectInTruck: worker) ifTrue: [~true].
(self selectOutTruck: worker) ifTrue: [“true].

(self selectHelp: worker) ifTrue: [“~true].
(self selectNoWorker: worker) ifTrue: [~true].
(self selectBigQ: worker) ifTrue: [~true].

iTask idleWorker: worker.

~false

c. Task Priorities. The message 'taskSelect:', seen above,
tries a set of schemes to give a worker a task. The order of
schemes defines a priority, in that the first task found is the
one assigned to the worker. The task priorities from highest to
lowest are:

54

.....

~ end of the day

- trucks to be unlocaded

- trucks to be loaded

- workers needing assistance

- tasks with no workers assigned
- tasks with a large backlog

- perform the previous task again
- random choice

The first priority is to check for night time, since work can not
be performed in darkness. The next priority is to unload incom-
ing trucks, then to load trucks. The fourth priority is to find
helpers when needed. For example, some task might require two
workers yet have only one worker currently assigned. Thus one
helper is needed. The fifth priority is to £ill tasks where no
workers are assigned. Then if all tasks have workers assigned,
the sixth priority is to reduce large backlogs. If there are
none, then the seventh priority is to reassign the worker to the
previous task. Finally, if the worker had no previous task, the
last priority is to choose one at random.

Starting at the top of the list, a few of these tasks will
be examined in more detail. The first scheduling priority is to
check for the end of the work day. The message 'selectlIdle:'
checks for:

1. working over 7.5 hours in one day
2. the condition of 'lightsout’

Current doctrine specifies a maximum of 7.5 hours per day per

., worker to be devoted to GRREG tasks. The condition 'lightsOut'

SN

occurs when the CollectionPoint is close to the front and it is
not safe to run lights at night. If either of these are true,
then the worker goes to sleep. This regquires that he be
scheduled for wakeup in the morning. This has been structured as
follows.

55
»aN . NN AP AT ¢ AT P AN AT T S N A o LA T e N A N T
A 2 R S R Qe S Ry RaRhA Dy D it Ty O

........
.......

e atad G

iy
L
3 Class CollectionPoint :CpTrucks
L)
E% | selectIdle: worker |ck t h|
L' ((worker hoursWorked) >= workMax or: [self lightsOut])
L« ifTrue:
Y h <- worker todayWorkTime.
;:{ -t <~ self timels.
o ck <- self morning: (self timels).
‘;n (ck = t) < h ifTrue: [ck <- t incHours: h].
worker sch: ck.
1< worker setlIdle.
' {i worker setSleeping.
1 H‘-
jﬁ%] Atrue
) ~false
,';"
P,: | selectInTruck: worker
1N ((enterQ notEmpty or: [inTruck notNil]
N)and: [unloadW size < unloadWorkersMax]
B) ifTrue: [
self taskInTruck: worker.
NN ~true
T 1.
::;: ~false
ol
el | selectOutTruck: worker
. ((loadW size < loadWorkersMax
N and: [exitQ notEmpty or: [self outTruckLoadable]]
-5) and: [loadQ size >= truckMin]
N) ifTrue: [
Eﬁx self taskOutTruck: worker.
] ~“true
b~4]. ~false
§ - . . .
0
nl The next two schemes for tasking are to unload and to 1load
i trucks, in that order. If the trucks are ready to be unloaded or
;}g loaded, then the messages 'taskIntruck:' and 'taskOuttruck:' are
s used to start the workers unloading or loading trucks respec-
Ay tively. Scheduling workers for trucks is more complex than most
;%& tasks since it takes helpers on the trucks to move the bodys to
: the tail gate, where pairs of workers can take the bodies to the
ad first queue for assigning evacuation numbers.
oA
< The table in the comment below is used to determine what
"§ each worker is to do in order to unload trucks. For example, the
g1 first and second workers passed in to 'taskInTruck:' are stored
; on a 1list of helpers, since two workers alone cannot unload a

|

56

IR
AAAA

N O I IO I I I I R P I PR R Oy SIS ik ~TER TN T AL AN R
d g . g ' gt 4, I T] , IR P L BN . L H b ! ,
10 vho! ARSI a. A -’. Ll 'r RN RN X 1A J'».“ W,

ﬂ“u"u‘
Bat 2=,

G
l!k'v.

¥ e 3.1
LI W o X >l

truck. The third worker passed in functions as one of the
helpers and gets onto the truck, and the other two remain on the
ground to carry bodies. Note also that the trucks must be moved
up to the unloading location with the message 'deQintruck'.

[2 & -
..-‘v-'-l_g LY)

Class CpTrucks :Identity

o
| Tl T T WY

B il Getting a new worker for unloading the trucks."
| taskInTruck: worker | s w |
worker setldle.
helpers add: worker. "This worker is ready to work."
s <- helpers size.
self deQinTruck. "Get truck in place for unloading."

U
L} ',';‘xux

. Rg gt
L ‘. -

Put helpers to work unloading.
number of action for the current number of
helpers unloading workers. ;

o 3 5 7

- - - - - —

- a2 az

a3 az a2t
a3’ a4 a2t
as a4 azt
as ast azt
a7 asit az2t
a7t a4t azt

VaoOUewn
tctctct ottt

~

aN = add N workers to the task.
t = retask all help workers. They are excess.

e g T T S
=
o
<
.
F 2 e g

B

(w <= unloadw size) = 0 ifTrue: [self itwO:s]
ifFalse: [w = 3 ifTrue: [self itw3:s]
ifFalse: [w =5 ifTrue: [self itw5:s]
ifFalse: [w = 7 ifTrue: [self reTask]
se: [self print: [('error: ‘',
(w printsString),' workers
are unloading a truck.!')]

] 1]]

" The logic of the truck tables got to big teo put "
into one method, so cut out each column of the table. -
For a value of w, and each range of s do the action.”
W(w=0) [3-4]:a3 {5-6]:a5 >6: a7t v
> 6 ifTrue: [self addInTruck: 7. self reTask]
ifFalse: [s > 4 ifTrue: [self addInTruck: 5)
ifFalse: [s > 2 ifTrue: [self addInTruck: 3] e

]] -

oy T

| itwo:

N 0N *=x

| itw3:s "(w=3) [2=-3]:a2 [4-5]:a4 >5: a4+ "

57

« e
ST

‘"

1

." ‘.‘l "l _‘n \
P
g

- & e
- Y v
[PP A T
f“ B 4y & 4 1, 1,4
P A

. [. B
P R S W A W e

Ry
a4 4, s
AR

P

a
- !'j. l. ',
b ‘s

0,7
g

R
L

-
<
Pl

’. -
.

2
»
Il

-
.

5
5

L3

" P
A

/ .
D. ‘
4

s
-

-'.;.. .
,

PSS

s > 3 ifTrue: [self addInTruck: 4. self reTask]
ifFalse: [s > 1
ifTrue: [self addInTruck: 2.
self reTask
]]

| itw5: s "(w=5) >2:a2t"
s > 1 ifTrue: [self addInTruck: 2.
self reTask
].

"Add a number of workers to the job of unloading."
] addInTruck: n | 1 h |

"n:start 2:1p 3:1p+1 4:2p 5:2p+1 7:3p+1M

"The odd man's job is to get onto the truck."
n odd ifTrue: [
unloadW add: (h <- helpers remove setWorking).
self pr:[((h printString),
' jumps on the truck.')]

whileTrue:

<= n - 2.

<= List new.

add: (helpers remove).

add: (helpers remove).

((1 first) task: 1 create: Unloader
) setCP: self

scheduleNow.

do: [:w | unloadwW add: w].

~HRHPS

i~

1.

The message 'addInTruck:', listed above, tells how many workers
are to be allocated to the task of unloading a truck. If the
number is odd, then the odd man is used on the truck and the

rest are scheduled to take off a body with the task class
Unloader.

The super class of Unloader is the class Task. This task
stores: the worker doing the task; the body the task is done to;

the name of the task; and the probability distribution for the
task time.

The super class of Task is the <class CollectionClass. In
the code above, the message 'setCP:' is passed to the Unloader,
and the super super class CollectionClass stores the <class Col-

lectionPoint for message passing from the task Unloader to the
CollectionPoint.

58

m

"Remember the Collection Point class for all workers."
Class CollectionClass :Identity

| cp |
[setCP: cPoint

cp _ cPoint
| cp

| nightTime
Acp nightTime

| 1lightsOut
~cp lightsoOut

| idleTask: tObj "-- All of these workers are now idle."
(tObj workers) do: [:w | cp idle: w].

| idleWorker: w
cp idleWorker: w.

| unloadTruck: toObj
~(cp unloadTruck: tObj)
| loadTruck: tObj
~(cp loadTruck: tObj)
| procEvac: tObj
~cp procEvac: tObj
| procId: tObj
~cp procld: tObj

| listWorkerTask

cp listWorkerTask
| reTask: wl

cp reTask: wl
| procDemon

~cp procDemon

]

Class Task tCollectionClass
| body
workerList "A list of the workers moving the body."
name
uniTime
|
[startUp
body <~ nil.
uniTime <- Uniform new var20: (self taskTime).

| taskClock | tck | "Get random time for this task."
tck <- uniTime taskClock.

~tck

59

Lt - " Ry w BRI : AR AR A
2, ¥ WS E RO e . S R TR Gt C T I
J" s i’u,ﬁ’l““}qh’. a",‘a'{'l‘l- ~"‘i“.'$ ANINY AP 5. ‘ 3) I“‘J"I')‘ Aoy v « Al

L) .- .

Qo

o Wl

W 4’,‘5"'

(A ALl

| name: n "store the name of this task."
Aname <- n

| printString "tell the name"
“namne.
body isNil ifTrue: [“name]
ifFalse:

{ ~(name, '(', (body printString), ")')].

| body: b "Store the body."
body <- b
| body "retrieve the body"
~body
U o o v o e ot s o o - "
| setWorking | w | "For all workers on this list,

set them as working."
w <- workerList first.
[w notNil] whileTrue:
(w setWorking.
W <= workerList next
1.
| workers "retrieve the worker list."
~workerList.
| workers: wl "Put workers on the worker list."
workerList <- wl.

| reSchedule: wObj "If there is a body then do the task."
body notNil ifTrue: [
wObj scheduleAfter: (wObj taskClock)
] ifFalse: [
self reTask: workerList.
]

]

Class Unloader :Task
{ startUpTask

~self,
| max "number of workers allowed."
A7.
i min "number of workers required for one body."
Az.
| taskTime "return the time required."
A2.

| prefix: echelon

~self name: (echelon, 'Unload')
N o o o e o e - "

self setWorking.
self body: (self unloadTruck: self).

The Unloader class message 'next' is received, and the work-
ers on this task are marked as working, and the message

€60

TSR

o,
\l . { '

>

-

??
]

"
A
'E 'unloadTruck:' is passed to self. This message is intercepted by
K the super super class CollectionClass. There the CollectionPoint
:3 class 1s stored as 'cp'. This allows the message to be forwarded
& to the CollectionPoint.
ry: Here the trucks can be accessed so one can get a body. And
) one can access the queues for putting the body when a task is
08 done. The running of a task procedure is a transaction where the
‘:f object Unloader has been scheduled. The actions are:

§ - 1. put the old body, if any, on the output queue.

e 2. test for being idle.

S

ot

L 3. get a new body from the truck.
o 4. 1if there are no more bodies, then retask the workers.
b~ 5. 1if there is a body, schedule after the time needed for the
& task.

N |
¥ These actions can be seen below.
L

o

Y

o

.
Lf
W
-
<
.
~

.

ot
=
=
i)
%
o
y
ng
,ﬁ 61

L'}
o
.

)

........................

-~
5
K
.
.
)
‘>
%,

ty

e

R

:4% Class CollectionPoint :CpTrucks

&)

‘ L] . .

Rﬁ. N Handle incoming bodies. (next)"
- | unloadTruck: tObj |bkdy t]|

&?‘ bdy <- :]

K Y self unloadl: tObj.

453 bdy notNil ifTrue: [tObj scheduleAfter:

A (tobj taskClock) J.

Ea N)

e ~ bdy.

YN | unloadl: tObj jwl bdy|

N

b wl <- (tObj workers).

R bdy <- tObj body.

o tObj body: nil.

ﬁv self put: bdy by: wl

&;; on: unloadQ msg: 'completes unloading, of'.
L)

wid bdy <- nil.

e self moveOutOverFlow: wl.

%sE self deQinTruck.

%

N (inTruck notNil and: [(self testIdleInTruck: tObj) not])
Ty ifTrue: [

At bdy <- self getBy: wl

Gy from: inTruck

Bt msg: 'start- unloading, of'.
e 1.

wie "Free the workers."
i bdy notNil ifTrue: [

o bdy enter.
SN JifFalse:["Free the workers."
#)3 self freeReTask: unloadW.

ot 1.

R ~bdy

D)

N The code for the other priority schemes is given in the
h}; appendix, and will not be discussed.

‘T;"
a8

N

\J“
N

l~J

\;;;;'l

A
.

‘k ‘ 62

¥

o

&',:‘f
;‘. ..' ‘‘‘‘‘ i s PP ' _______ ‘f"(- N TR T R SRR TP
G - KOG n-s’.n‘t"l‘.a ,“,l':,.w\.\'l, Wbl .l 'A“.u. R @ Bl e T . 5 ., RO NN ROPLNRA ' "u"\“ 3

L
v

DA% IR

bk

o

IX. Conclusions

Obiect oriented languages have become popular in the 1980's.
Their strengths have been in the areas of simulation, graphics,
project/software management, and AI. This report restricts its
scope to simulation and does not touch upon other strong points
of SMALLTALK. These other fields are being actively pursued at
the BRL and future reports will be concerned with additional
applications of SMALLTALK.

SMALLTALK provides a natural framework for simulation stu-
dies. Programs can be easily written, tested, debugged, run, and

modified. The GRREG simulation could not have been done in the

time available using any other language or simulation package.

X. Summary

This paper discusses a simulation project, written in
SMALLTALK, that was performed by the BRL for the Graves Registra-
tion (GRREG) Service of the US Army Quartermaster School. The
purpose of the report is first to give the reader an introduction
to the concept of object oriented programming, and second to show
how the object oriented language SMALLTALK was used for the GRREG
simulation. The paper first describes some of the features of an
object oriented language, including a discussion of objects, mes-
sages, and inheritance. Next, the syntax and semantics of the
object oriented language SMALLTALK are presented. There follows
a synopsis of the GRREG study conducted by the BRL, and a look at
how SMALLTALK was used to simulate the GRREG task network.
Finally, the report steps through sections of the code to give
the advanced reader a glance at how some generic actions can be
programmed in SMALLTALK.

63

AT, ¥ R e e R T T

P T P o A e , T T RN
) °‘-'!‘ Vo AY ilv“'h‘"h#. nA'%:‘?it“!-"“!' "- s "..'2 %.K n 'F A M) A% 2 ol My IR Pon P '7" A :‘50',"‘.‘0‘! Wts .“r‘.!b“.b’.' 4

>

W
KRS

10.

11.

REFERENCES

Stefek, Mark and Bobrow, Daniel. "Object-Oriented Program-
ming: Themes and Variations," AI Magazine, Winter 1986,
pp. 40-62.

Dahl, 0.J. and Nygaard, K. "SIMULA - An Algol Based Simula-
tion Language," Comm. ACM, No. 9, 1966, pp. 671-678.

Rentsch, Tim. "Object Oriented Programming," Dept. of Com-
puter Science, Working Paper, UCLA, n.d.

Goldberg, Adele and Robson, D. "Smalltalk-80: The Language
and its Implementation," Addison-Wesley, 1983.

Fikes, R. and Kehler, T. "The Role of Frame-Based Represen- ’
tation in Reasoning," Comm. ACM, Vol. 28 No. 9, 1985, pp.
905-220.

Goldstein, I.P. and Roberts, R.B. "NUDGE, A Knowledge-Based
Scheduling Program," IJCAI-1977, pp. 257-263.

Stefik, Mark. "An Examination of a Frame-Structured
Representation System," IJCAI-1979, pp. 845-852.

Rees, J.A., Adams, N.I., and Meehan, J.R. "The T Manual,"
Yale Univ. Technical Report, Jan. 1984.

Bobrow, D.G., Kahn, K., Kiczales, G., Masinter, L.,Stefik,
M. and 2dybel, F. "CommonLoops: Merging Common Loops and
Object- Oriented Programming," ISL-85-8, Xerox PARC, Aug,
1985,

Cohen, A. Toni. "Data Abstraction, Data Encapsulation, and
Object Oriented Programming," Dept. of Computer and
Information Sciences, Working Paper, Univ. of Delaware,
n.d.

Shankar, K.S. "Data Structures, Types, and Abstractions,"
Computer, April, 1980, pp. 67-77.

64

APPENDIX

-

. Source Code

-

o
o -

€5

» m

‘ ?
() M"“n'&f. (X

D R T R T e ICT MR = 2 o A DAL LD Dot L 4
DA OO R O LA DAL AT AR L S T ST 8 A !t:'fl.,ag g Mot

VY
a v

W By A%y BV JT8 WV BT,
) T e Bl S <
N 545 I "'"v‘A‘r

_—
)
;b!’: i. &3, 3!91'

9
g

-

Introduction

F This appendix contains a listing of the source code for the
. GRREG simulation. Exhibit A~1l lists the class hierarchy for the
various subclasses used in the simulation, and Exhibit A-2 gives
a brief description of those subclasses. The remainder of the
appendix lists the source code. The classes are listed in alpha-
betic order, except for the Task subclasses, which, because of
their similar structure, have been grouped and placed at the end.

- Xl £ XX 3

P N

<4 T = g’ VN . - - N - et Y TR Yl S I B I B VR A - P B e T e "aM™
o (n) e g4 { " "-'('&'\"’) o AN
. 3 g ¢ TR, 4) oo}

SO WL X WAL e 18014

B S IR Mt Fo T A M e e U R
) d. l:"!‘ﬁ,hl.ﬁl \,'5, \ SN‘ X ‘l n’l;\‘ !'t&;.‘.. ¢

W
," (‘-
AN LA

40

A Exhibit A-1. GRREG Class Hierarchy

]

¥,

:::f‘c

A Clock

o

o Obj

ﬁﬂ Simulation
3@' Probability
e Uniform
Rnx UserData
e GlobalData

. UserAccess

.ﬁk‘ Identity

3 Environment

j% IdleTask

b Body

e CpTrucks

s IntermediatePoint
O CollectionPoint
e TemporaryCemetery
L RestartTools

iy SuperReStart
e ReStart
e CollectionClass
o DemonTask
s Truck

NN GenTruck

nr?x Worker

i Task

e InCover

i‘.r Dd3x5

,:ﬁ Mvgsite

* e
Y Dig
Yo Plates
e Shroud
A DTailId
W Fingerp
%»3 DisRobe
sa.." ! Move

W CkId

o Misc

< Dd

Nl

oy Pack

%) 1d

;), Evac

e Loader

_ Unloader

g
Y

B

K

BTN ES

y N N . . . - " " - S N T R 4 no - » r e A Prad
r o N A AR A M L SO it Lot ARG
- '.tfi‘a "‘Y."i 5"?‘.,9 i,! "1"\‘“ "P-‘ Q.“.h (x.h THhER, ‘J‘i N 9""'...‘.‘.‘.; -'l .‘ Mo .’ e !" !.l] o] it w. of o

Bt st

Clock

Obj
Simulation
Probability
Uniform

UserData

GlobalData

UserAccess

Identity

Environment

IdleTask

Body

CpTrucks

Exhibit A-2. Class Descriptions

Contains the simulation clock.

The root of the simulation.

Controls the processing of each event.
Used to access Random nunmbers.

Transforms random numbers into distributions.

This super class allows storage of applica-

tion dependent global data throughout the
simulation. Note: there is only one UserData
class in the simulation.

Stores application independent data, like the
current simulation time and the event queue.

This super class contains a pointer and
methods for acesss and update of the Global
data throughout the simulation.

This super class contains access to applica-
tion independent global data. As well as
keeping reference to unique names for each
object in the simulation, Identity allows
access and update of the event dueue. Thus
all offspring of 1Identity are scheduleable
objects.

Starts up an application dependent simula-
tion.

This task Creates workers and holds thenm
until there is work to be done.

This <task c¢ontains the attributes of a
cadaver.

This super Class of the collection points
contains that portion of the Collection point
processing that is in common with each col-
lection point. This task contains the worker
allocation Methods. As well as the queues
for incomming and outgoing Trucks.

69

LT O o L P L S R S S L N e 3
P RIS AT S

“w
-~

LA T 4
'-\:‘(‘.).\-_:\‘.\

EF&*
“o &

S

-

<

205
SRl e Bt bo

TemporaryCemetery

IntermediatePoint
CollectionPoint

RestartTools

SuperReStart
ReStart

CollectionClass

DemonTask
Truck

GenTruck

Worker

Task

InCover
Dd3x5

Mv2site

Class Description (cont.)

The Collection Points are a network of gueues
that allow the workload to flow from task(
the offspring of the Class Task) to task.
Each of the three Collection points contain
the queues and the links from one task queue
to another task queue.

Kk kkkk

* % % %k %k

These three classes allow the definition of
different processing configurations and
collection-point to collection-point net- '
works.

%k Kk dkkk

& % % %k K %

This super class allows message passing from
the offspring of Task to the collection
points, which are offspring of CpTrucks.

This periodic task invokes output displays.
Defines the attributes of a truck.

Defines the rate at which bodies are
retrieved from the field.

Defines the attributes of a collection point
(MOS 57F) worker.

This super task stores the workers and
deceased for specific tasks associated with
collection points. The offspring of Task are
processing actions of workers upon a cadaver.
Place remains in grave and cover.

Prepare internment and plot records.

Move remains to grave site.

70

Class Description (cont.)

ShipPe Prepare and ship PE.

Dig Dig grave site.

Plates Prepare plates and tags and attach.

Shroud Shroud remains.]
DTailId Perform detailed ID; consists of anatomical,

dental, and/or skeletal charting, photography
and comparison of evidence with records.

Fingerp Fingerprint remains.

DisRobe Remove clothing and examine.

Move Move remains.

CkId Compare remains with documentation.

Misc Miscellaneous record keeping.

Dd Prepare convoy list.

Pack Place remains, documents, and PE in human

remains pouch and move to holding area

Id Check ID tags, field medical card, prepare
statement of recognition, record of recovery
(if necessary), inventory PE and fingerprint.

Evac Assign an evacuation number and record.
Loader Load remains on truck. j
Unloader Unload remains.
d
71

L S A P . e e
A1 (] " " ""-{. A
TS AENI NS PR

s 5

- RS
2 Y

[

I l,:. 5 “h :l;

Y

ZoZat)

X

PR

Class Body

e L e L Dt T Bodies ."
Class Body :Identity
| death finger beenToCP enterTime exitTime|
[startUp
enterTime <- Clock new.
finger <- false.
beenToCP <- 0,
~self
| deathAt: time
death <- (Clock new) set: time
| deathAt
~death
| enter
enterTime <- self timels.
| exit:cp |deltal
exitTime <- self timels.
self print:
(enterTime printString), ',
(exitTime printsString), ' ',
((delta <- exitTime = enterTlme)
printstring), !
(self printString), ! ###',
(cp printString)].
~delta.

| beenToCP: btc
beenToCP <- btc.

| beenToCP

~beenToCP > 0
| beenTolP

~beenToCP > 1
| setIP

beenToCP <«<- 2.
| setCPp

beenToCP <- 1.
| printString

beenToCP > 1 ifTrue:

[~super printString, '*'). " 2 "
beenToCP > 0 ifTrue:

[*super printString, '+' j. " 1 "
~super printsString.

72

-r-r Pl

SR -.‘x;_'.-‘ v J, A N -\ \.‘\ ‘J‘ *\."\.""-.}\’-. o e T T A A T T N

- N &"
u‘:\‘a "

- -
\, o ~I

LM

I
I
|

prefix
Albl
fingerP
~finger.
fingerPrint Lt
finger ifFalse: [~finger <- true).
~false

"Scheduling"

next
self pr:[((self printString),
' Lays there.')].

73

S R S e A AL T T T e T e e L
h LS P Nl LN P L P N R T TN
BN T o s el RO,

e S TS T SO PP PP VT DY ST T U IR S SET O LD ST S Pt S P S ST P P N VR WP PR TSP STy PR T

Class Clock

Class Clock :Magnitude
| day hour min sec | "hands of the clock."”
[new
; day <- 0.
b hour <~ 0.
; min <- 0.

sec <- 0.
% | new: aClock
self set: aClock

"Setting"
| set: aClock
day <- aClock day.
hour <- aClock hour.
min <- aClock min.
sec <= aClock sec
| sec: aNumber
sec <= aNumber.
[sec >= 60] whileTrue:

[self incMin: 1. sec <- sec ~ 60].
[sec < 0] whileTrue:
[self decMin: 1. sec <- sec + 60)

min: aNumber
min <- aNumber.
[min >= 60] whileTrue:

o o

[self incHour: 1. min <- min ~ 60].
[min < 0) whileTrue:
[self decHour: 1. min <- min + 60]

, { hour: aNumber
) hour <- aNumber.

[hour >= 24] whileTrue:
[self ‘ncbhay: 1. hour <= hour - 24].
[hour < 0] whileTrue:
. [self decbhay: 1. hour <- hour + 24]

: { day: aNumber
day <- aNumber

b "UpDating”
| incSec: aNumber
4 self sec: (sec + aNumber)
| incMin: aNumker
- self min: (min + aNumber)
| incHour: alumber
self hour: (hour + aNumber)
, incDay: aNumber
day <- day + aNumber

j decSec: aNuamber

self sec: (sec - aNumber)
4 | decMin: aNumber
self min: (min - aNumber)

K 74

§ "“-‘(‘;1' L Y S AN GRS L R ".‘ i "-"‘\"‘ 0 ol e T R ‘\’r W v R T
UL, S AN AN .‘.\.q ... WAL i“‘»‘ﬁ*.ﬁ'- . -“;‘;’FQG» bkt Lo Y O *. x"., .‘b.'l’) .’l'e. :"'v‘-‘;‘.;'l J ~

ot

\ v » .‘ ‘
’(g l‘*t"*! i.\'l

| decHour: aNumber

self hour: (hour - aNumber)
| decDhay: aNumber

day <- day - aNumber

| * aNum
! A((((Clock new

yinchay: (day * aNum)

) incHour: (hour * aNum)

) i Min: (min * aNum)

) in.3ec: (sec * aNum)

| + aClock
~((((Clock new: aClock
)incDay: day
) incHour: hour
) incMin: min
) incSec: sec
| = aClock
A (((Clock new: self
ydecDay: (aClock day)
) decHour: (aClock hour)

) decMin: (aClock min)
) decSec: (aClock sec)
“Access"
| day
~day.
| hour
~hour.
| min
Amin.
| sec
~sec.
| printHM | hm s |
hm <= (hour*100) + min.
hm < 1000 ifTrue: [
hm < 100 ifTrue: [
hm < 10 ifTrue:
[s <= '000', (hm printString)])
ifFalse:
[s <= '00', (hm printString))
ifFalse:
[s <= '0', (hm printString)]
ifFalse:
(s <= (hm printString)].
A8
| printString

sec = 0 ifTrue: [~ (day printString),
':', self printHM].
A~ (day printsString), ':', self printHM,

75

. - ' - Y e L B T RN B N n ¥ W
R (f’ o {4: N -"_' ’r ¥(-zw Ty 5_ o .ff’+‘i f;{*f*{;{ ': \~ l.‘& n q“’r ”1‘ 0y *5&5\ 5"

SLETar

VI IT T
AT Al \
A I,-r‘_?,l.a.* B

| = aClock
~((day =
& (hour =
& (min =
& (sec =

"NOTE: Combining some of

1:', (sec printString)

aClock day)
aClock hour)
aClock min)
aClock sec)

the parts

makes comparisons faster."

| > aClock | left right |
((left <- self highPart) >
(right <- aClock highPart))
ifTrue: [“~true]
ifFalse: [(left = right)

ifTrue:
[(sec > (aClock sec))

)

ifTrue: [“true]

]

not

not.

~ (min + (hour * 100) + (day

].

~ false.
| <= aClock

~(self > aClock)
| >= aClock | 2z |

~(self < aClock)
| < aClock

~(aClock > self).
"pPrivate"
| highPart
]

76

* 10000))

PR T

e

AT WASAI 20 o A sy N R QU A W R e ! S
:"?“ .O’i,ﬂ.n 4"-\"! AL AT A A YA WA ~a"bl‘<;" e ‘ﬁ"‘l“ A bt), ":"" \‘ .‘", 'v‘ g~ A ’.‘Q\‘Q O} Alal‘ I“n N AN W n

_ ““-—-wa—v--]

aha!

- it
M) Q';

t

= &
b
()
% Class CollectionClass
et
af‘
"rﬁ'
By
: "Remember the Collection Point class for all workers."
:&j Class CollectionClass :Identity
o | cp |
53 [setCP: cPoint
o4 cp _ cPoint
’ | cp

% . | nightTime
%ﬁ Acp nightTime

' H
whe

' | lightsout
v ~cp lightsOut

%2 | idleTask: tObj
oY) "--~- All of these workers are now idle."
R (tObj workers) do: [:w | cp idle: w].
e | idleWorker: w
Atk cp idleWorker: w.

-,
;12 | unloadTruck: toObj

o A(cp unloadTruck: tObj)
%1 | loadTruck: toObj
i A(cp loadTruck: tObj)
X | procEvac: tObj
55N Acp prockEvac: tobj
b | procId: tObj

{§ ~cp procld: tObj
P> | procPack: tObj

~cp procPack: tObj
. | procCkId: tObj
o ~cp procCkId: tObj
3 | procMove: tObj
N Acp procMove: tObj
| procDd: tObj
Acp procDd: tObj
s | procMisc: tObj

\{

3 Acp procMisc: tObj

4

% | procDisRobe: tObj

gl ~cp procDisRobe: tObj
N . | procFingerP: tObj

o Acp procFingerP: tObj
A3 | procDTailld: tObj

§=. Acp procDTailId: tObj
Ao | procShroud: tObj

) Acp procShroud: tObj

g | procPlates: tObj

77

gy AN

L

b Wi 4

Ol »
;.V'"ﬁ

.J_"..'.

Ay

DT X X

¥
‘)L.,"Q“'g o~

~cp procPlates: tObj
procDig: tObj

~cp procDig: tObj
procShipPe: tObj

Acp procShipPe: tObj
procMv2site: tObj

Acp procMv2site: tObj
procDd3x5: tObj

Acp procDd3x5: tObj
procInCover: tObj

Acp procInCover: tObj

listWorkerTask

cp listWorkerTask
reTask: wl

cp reTask: wl
procDemon

ACp procDemon

78

BN WX O e L) ¥ UGN U A N ML CA \CSVET
R\ A‘z.‘t',"a",‘a":w"'ﬂ 8 \"'vﬁ"ﬂ!“!g.‘.!"ﬁ" l".*h ..i" [U.b% ") i_.él?g'i{q'i g" W “‘!‘i.? [¥ ‘ EA P, a N _5'0?5 I

,‘”..

O

.'.W '

Bt M S

- IRUATRN S RS Yo ¥ ¥
AN N

e e o
A e

o w'le

PR R

Al

"ﬂ UNDA R ' t‘;,l’.‘ \‘1.\.

Class CollectionPoint
"Brigade Level"

Class CollectionPoint :CpTrucks

"Data" |
evacW idW packW ddW miscW "Workers doing tasks"
evacQ idQ packQ ddQ miscQ "Places to put bodys."
loadQ
taskList "a list of triples
(see makeTaskList)."
battleZone "Lights out at night."
"Methods" |
[prefix: echelon | ch |
[CP | echelon = ', echelon]display.
ch <- echelon at:l.
ch == $x ifTrue: {
A (echelon copyFrom: 2 to: (echelon size)), 'c'
] ifFalse: [
ch == $t ifTrue: [~echelon, 'c']
Lo
| startUp
[CP | startUp ', (self printstring)]display.

super startTrucks.
self startQueues.

0 timesRepeat: [self addBodyOn: evacQ].
0 timesRepeat: [self addBodyoOn: idQ].
0 timesRepeat: [self addBodyOn: packQ].
0 timesRepeat: [self addBodyOn: ddQ].
0 timesRepeat: [self addBodyOn: loadQ J.

self taskList: (taskList <- self makeTaskList).
battleZone <- true.

| reStart: blist |tk bdys|
(bdys <= blist first) = 'p' ifFalse: ["letter"
['warning error: CP letter = !,
(bdys printString), '.' J]display.
1.

bdys <- blist next. "number of bodies"

tk <- (((((self create: GenTruck) setCP: self
) queue: (self enterQ)
) £ill: (self truckMin) to: (self truckFull)
) bdys: bdys
} schedule: 1.

(((((self create: GenTruck) setCP: self
yqueue: (self exitQ)
) rate: (tk rate)

79

"N e %
5.0 ...' U,

; . AR Pt T T A * 4
i L) "l Mg i g [“ ?" % 2R ‘tft‘.,k g .'A.‘ A S At “h) 'l‘s, t'l.t.i." WY, 2"‘ |} v'"l N .‘n‘I "." '8 n'

) trucks: (bdys / 12 roundTo:l)
) schedule: 30.

| deceased: list | foo pers bdys time tk tkRate |
['CP list=', (list printString) J]display.

(foo <- list remove) = 'C' ifFalse: ["letter"
['warning error: CP letter = ',
(foo printstring), '.' Jdisplay.
].

pers <- list remove.
bdys <- list remove.
time <~ list remove.

tk <= (((((self create: GenTruck) setCP: self)
queue: (self enterQ))
fill: (self truckMin)
to: (self truckFull))
bdys: bdys)
schedule: 0,

((((((self create: GenTruck) setCP: self
Yqueue: (self exitQ)
) timeTo: time
) rate: (tk rate)
) trucks: (bdys / 12 roundTo:1l)
) schedule: 0.

(((self iTask: (self create: IdleTask))
setCP: self) personal: pers
) scheduleNow.

((self demon: (self create: DemonTask))
setCP: self) scheduleNow.

| makeTaskList | 1 |

1l <~ List new.

1 add: (self makeTL: evacQ with: evacW
task: Evac).

1 add: (self makeTL: idQ with: iaw
task: Id).

1 add: (self makeTL: packQ with: packW
task: Pack).

1 add: (self makeTL: ddQ with: daw
task: Dd).

1l add: (self makeTL: miscQ with: miscW

taskN: Misc).
Al

"make the queues for the Collection Point."
| startQueues

80

- - v oA

- .
. LN L 0y J
L ’l’f' RO L

R R NS e A AR R P Y A N
kq,‘ o p D Ml U

! 'q‘q ..‘!.ll.‘.; y

evacQ <- self unloadqQ.

idQ <- List new.
packQ <- List new.
ddQ <- List new.

miscQ <= List new.
loadQ <- self loadQ.

"Workers'"
evacw <- List new.

iaw <- List new.
packw <- List new.
daw <= List new.
miscwW <= List new.
| lightsout
battleZone ifTrue: [~self nightTime j].
~false,
| | Uy —
NEXT

| procEvac: tObj | wkr bdy |
wkr <- tObj workers first.
bdy <~ tObj body.
tObj body: nil.

self put: bdy by: wkr
on: 1idQ msg:
'completes Evac form DD1077, on'.

(self testIdle: tObj) ifTrue:|

bdy <- nil
JifFalse: [
bdy <- self getBy: wkr from: evacQ
msg: 'assigns Evac # to'.
].
self free: tObj when: bdy from: evacW.
Abdy.
| procId: tObj | wkr bdy |

wkr <- tObj workers first.
bdy <~ tObj body.
tObj body: nil.

self put: bdy by: wkr
on: packQ msg:
'‘completes Id and DD forms, on'.

(self testIdle: tObj) ifTrue:|

bdy <- nil
JifFalse: [
bdy <- self getBy: wkr from: idg

81

: . . > P) '. '. g -~ " 'm'_‘ W &Y = o J WA LS *.‘.
' "'9?“‘7{"'« LA R $s ‘»i‘vrﬂ'"».i'i?\'gf"q\‘a‘i s.\ v‘b‘:*.':. 'J‘?&‘ﬂ ALK TOUURR R AT "-*’.‘s‘!‘l. ‘:’r WL 'r?

» t
LAV

" -

- -
e

J
Y

g‘

‘%I,..fs

A X

f_P/,'.', T T,

i MG

| procPack: tObj

msqg: 'starts to I4d'.

1.
self free: tObj when: bdy from: idw.
~pbdy.

| Wkr bdy |
wkr <- tObj workers.

bdy <= tObj body.

tObj body: nil.

self put: bdy by: wkr
on: ddQ msg: 'finishes Moving, of °'.
(self testIdle: tObj) ifTrue:[
bdy <=~ nil
JifFalse: [
bdy <~ self getBy: wkr from: packQ

msg: 'start to Pack and Move'.
]-
self free: tObj when: bdy from: packW.
~bdy.

| procDd: tObj | wkr bdy |

| procMisc: tObj

b

NN Py Y

wkr <- tObj workers first.
(bdy <- tObj body) notNil ifTrue: [bdy setCP].
tObj body: nil.

self put: bdy by: wkr on: 1loadQ
msg: 'completes DD175, for'.

self put: bdy by: wkr on: miscqQ.

(self testIdle: tObj) ifTrue:{

bdy <~ nil
]ifFalse: [
bdy <- self getBy: Wwkr from: ddQ

msg: 'starts to fill out DD175 for'.

].
self free: tObj wher: bdy from: ddw.

Abdy.
| wkr bdy |

wkr <- tObj workers first.
tObj body: nil.

(self testIdle: tObj) ifTrue:(
bdy <- nil
JifFalse: [

82

.......................

X,
T ‘*""'t AOBEEIN

| list

bdy <- self getBy: wkr from:
msg: 'does the miscellaneous
]0
self free: tObj when: bdy from: miscW.

~bdy.
self listInTruck.

self listTask: taskList.
self listoutTruck.

| listWorkerTask

self listInTruck.

self listTask: taskList.
self listOutTruck.

self reTask.

83

<535y rr\-r%}) .;7(..‘-4*'

LEEREE N M W A

n Ll

miscQ

task.'.

. .n 3 !£

»}."

<, -
.'x SR 13

e B

sl
a

E 2 Y
5'§ Class CpTrucks
[}
:
o Class CpTrucks :Identity
LA "Data" |
o "Unprocessed/Processed Bodies in trucks"
%ﬂ?' enterQ exitQ
:i@ "The curent unloading/loading truck."
%ﬁ‘ inTruck outTruck
1 "Lists of workers doing tasks."
R unloadW loadW
Wt "Places to put bodies."
Hled unloadQ loadQ
$”§ "Through put list"
R goneQ
a” "Variables (see startUp)"

o unloadWorkersMax loadWorkersMax

truckFull truckMin pullUpTime maxBodys

T "The next stop for bodies."

ol truckNext fowarding
aég workMax
", "Hooks to sub classes."
0 iTask demon

"A list of triples (see makeTaskList)."

?ﬁ?, tasklList
r "Those that are waiting to do a task,"
Lo helpers
>$ "and the task the worker is waiting for."
WL N helpT

“ timeTo
*{‘5 "Used to count the bodies at the CP."

i countofbdys

jbj "Report on queues information."
?fg gcnt gname

"Methods" |

'Qm [startTrucks
?&; unloadWorkersMax<- 7.
Py "Max. number of workers for unloading."
By loadWorkersMax <- 6.
W " ' 1 " loading."
. truckFull <= 24.
008 "Max. number of bodies in a truck.”
ot truckMin <= 12.
ﬂgf "Min. number of bodies to load."
335 timeTo <=- 5, "default time."
s LJ pullUpTime <- 1. .
?Q;j "Min.s to move truck up to unloading loc."
;.a maxBodys <- 800.
oS "CP body overflow threshold."
= fowarding <- false. "under threshold."
[_‘ g

e

“' t"': 84
25
"
34.:;“ - R

) s g - —-f- P) -;- .».".,- L VL NN W SR N | - - _\‘).-\!—\;.
M M o N 2) d) m A} . 4 Phs
e a‘f,!'a‘l:'.‘\"u'ﬁ"l Y et ’5_

R
SR SN AT LRI ,)_t

Il Tl
i “_‘l;‘;‘t‘l "! ‘.‘)\

a4

; 1
by t, Ao

"7.5 hours of work per day."

"Truck Queues"

currently being unloaded."
"Bodies not in trucks."

"Workers"

workMax <- 7.5.
enterQ <- List new.
exitQ <= List new.
inTruck <- outTruck <- nil.
"Truck
unloadQ <- List new.
loadQ <- List new.
goneQ <= List new.
unloadW <~ List new.
loadw <- List new.
helpers <- List new.
timeTo: t
timeTo <- t.
enterQ
~enterqQ.
exitQ
~exitQ.
truckMin
~AtruckMin
truckFull
~truckFull
truckNext: g

truckNext <- ¢

stop

demon stop
idleWorker: w

iTask idleWorker:w.

d
~demon <- d
demon

~demon
taskList: tl
~taskList <- tl.

demon:

it
AiTask <~ it
iTask

~iTask
unloadQ

~unloadQ
loadQ
~loadQ

iTask:

TASK Assignments
taskSelect: worker
85
AR ERERL 2 at I\ \ h Jah B, YR g A“
R A Tt AR A RN AR g't"a D XN by l.

~

oY

0
-d’ l‘..v- Dy “ﬁ >

2T

"The next place to take trucks."

]

"qa‘- T ” ol .,. - oSO &
A \.‘!. h‘hi“ Ty ‘.“.’ ,;G'rr‘l‘ﬂ.f . ,'l. ol I 0 e A

worker sleeping ifTrue: [[(worker printString),
' is Sleeping. 'ldisplay.

a. ~true
> (self selectlidle: worker) ifTrue: [~true].
A (self selectInTruck: worker) ifTrue: [~true].
i3 (self selectOutTruck: worker) ifTrue: [~true].
of (self selectHelp: worker) ifTrue: [~true].
- (self selectNoWorker: worker) ifTrue: [~true].
w (self selectBigQ: worker) ifTrue: [~true].
o iTask idleWorker: worker.

N ~false

iy

\
%)

p | selectIdle: worker |ck t hj

((worker hoursWorked) >= workMax

o« or: [self lightsOut])ifTrue:[

~ h <- worker todayWorkTime.

) t <~ self timels.
fﬁ ck <- self morring: (self timeIs).

20 (ck - t) < h ifTrue: [ck <= t incHour: h].

‘ self print: [((worker printString),
f ' takes a nap, until ',

- (ck printString), '.')].

z worker sch: ck.
A worker setlIdle.

" worker setSleeping.
. ~true

e).
o ~false

¥

)3 | testInTruck
! ((enterQ notEmpty or: [inTruck notNil]

. yand: [unloadW size < unloadWorkersMax]
)) ifTrue: [~true].
5 ~false
9
.4

.= | selectInTruck: worker

' self testInTruck ifTrue: [
. self taskInTruck: worker.
i ~true
:t]. ~false
)
A | selectOutTruck: worker

. ((loadWw size < loadWorkersMax

. and: [exitQ notEmpty

1 or: [self outTruckLoadable]]
A) and: [loadQ size >= truckMin]
2) ifTrue: [

" self taskOutTruck: worker.

Iy 86

L .

Mol

s < f.,.r rr W - AN P s < d W, WO M M WL T Y -~ -r_-_-" o L -.
NIty \.-. J‘f,‘ R -J,\J,* xa\\.*\“\-\."\ P ey SN NN, "z‘"‘\"erw

£ 0 s AV N

\, Q e -l p o a gy b bar o o g L ket s w " »
P, w T N W e W P b A A bt ol ke B e, e et i i A A Nl Bl ik el o \"L"-'\-“'\‘U'\"‘_“\V‘:"l"‘l."ﬁuvtvw‘vvw
-

BN ~true

S
AN 1. ~false
oy
Ban | selectHelp: worker
: helpT notNil ifTrue: [
oy self startHelp: worker.
R4 ~true
N 1. ~false
s
an | selectNoWorker: worker | taskl |
: (taskl <- self noWorkerTask) notNil
O ifTrue: [
S self start: taskl with: worker.
el Atrue
:Sg 1. ~false
| selectBigQ: worker | taskl |
" (taskl <- self bigestQ) notNil
h} ifTrue: [
XX self start: taskl with: worker.
- ~true
o]. ~false
QUL
e Mmoo - This list of workers needs to find work."
pr-. 7 | reTask ": helpers"
e helpers notNil ifTrue: [self reTask: helpers]
A
| reTask: list | 1 val |
g val <- false.
SO 1l <= List new.
N [list isEmpty] whileFalse:
.}?{ [1 add: (list remove)].
o "give them tasks."
e [1 isEmp*y not and:
"y [(self taskSelect: (1 remove))
e]] whileTrue: [val <- true].
e "no more jobs case."
L [1 isEmpty ! whileFalse:
y [iTask idleWorker: (1 remove)]J.
R ~val
W
Ead
[e over worker/night testing."
e | testIdle: tObj |val]
R val <- false.
- tObj workers do:[:w | (self selxctIdle: w)
‘ ifTrue: (val <- true] J].
e val ifFalse:[(self testInTruck)
2 ifTrue: [val <- true]].
(s ~val.
0
b | testIdleInTruck: tObj |val|
L
L
e
3 z}- 87
f:'u :

AD-A175 198

UNCLASSIFIED

SIMULATION USING SMALLTALKCU) ARNY BRLLISTIC RESERRCH

LAB RBERDEEN PROVING GROUND MD R R HELFMAN ET AL

OCT 86 BRL-TR-2764

F/G 972

--- r—

Ce TRy
AN LML

h‘)‘ﬂh;, Q,.r, . ‘.‘5

e

R e Lt

%

NN

}

o
FEEEEEE I
P 3

[T

s

n

EEE
==
N
N

fr
r
Fr
=
N
o

N
(83

it

atp—
s —
———
—

i

!
‘}ROCOPY RESOLUTION TEST CHART
N

13

Q:QC . “15: 3 B

T UTrTYRYYEY

val <- false.

tObj workers do:[:w | (self selectIdle: w)
ifTrue: [val <- true]].

~val.

| nightTime jhi "from 8pm to 6am is nightTime."

h <~ self timeIs hour.
(h <=6 o0or: [h> 20]) ifTrue:
[n h > 201"
A true

----------- set up functions"
t g with: w task: t 1|
1 <= List new.

1l add: q.

1l add: w.

1 add: t.

1 add: true.

A1

| makeTL: g with: w taskN: t | 1]

1l <= List new.
1l add: q.
1 add: w.
1l add: t.
1 add: false. "no Queue reports"
A1
e ittt ledet g debug body generation."

| addBodyOn: q | bdy time |

time <= (Clock new) set: (self timels).
bdy <- (self create: Body) deathAt: time.

bdy fingerPrint.

bdy setcCP.
q add: time
put: bdy
Neere—ee- Getting a new worker for unloading the trucks."
| taskInTruck: worker | 8 w |

= 3

(%0 - 8% ¥y ¥
bt ..ijfclz<34 o

O™ P AT\ 9y T o o RN L S U0 B AV,
R ORI« N A X AN N TS TR At U e ;9'* L TN ARy u:“&f.\f 202

worker setIdle.
helpers add: worker.
"This worker is ready to work."
s <- helpers size.
self deQinTruck.
"Get truck in place for unloading."

Put helpers to work unloading.
number of action for the current number
of unloading workers.

88

3,

TOW YW TN rew

7 MBI W 0\
Y). £ ¢ AR N

N # helpers 0 3 5 7

& / -- e e e e
a:"! # 1l - - - t

e ¥ 2 - a2 a2 t

- # 3 a3 a2 a2t t

ot # 4 a3 a4 a2t t

Xy # 5 as a4 a2t t

Bk # 6 as a4t a2t t

Sy # 7 a7 a4t az2t t

Y # >7 a7t a4t azt t

' #

o # Key: aN = add N workers to the task.

4l # t = retask all help workers.

2$£ # They are excess.

.,l]

}g (w <= unloadW size) = 0 ifTrue: [self itwO:s)
* ifFalse: [w = 3 ifTrue: [self itw3:s]
e ifFalse: [w = 5 ifTrue: [self itwS:s]
Fb. ifFalse: [w =7
%ﬁi ifTrue: [self reTask]
Ky ifFalse: [self print: [('error: ',
£ (w printString),' workers
N are unloading a truck.'))
-]]]]

)
:':
gﬁﬂ "The logic of the truck tables got too big to put
ﬁv # into one method, so I cut out each column of the

table. For a value of w, and each range of s
do the action.

a &: "

W
e | itwo: s "(w=0) [3-4]:a3 [5-6]:a5 >6: a7t "
%:, s > 6 ifTrue: [self addInTruck: 7. self reTask]
i ifFalse: [s > 4 ifTrue: { self addInTruck: 5]
. ifFalse: [s > 2 ifTrue: [self addInTruck: 3]
o 1)
0ot
80 | itw3:s "(w=3) [2-3]:a2 [4-5]:a4 >5: a4t "
b s > 3 ifTrue: [self addInTruck: 4. self reTask]
. ifFalse: [s > 1
B ifTrue: [self addInTruck: 2.
Ly self reTask
if:]]
)
Bi | itws: s "(w=5) >2:a2t"
- s > 1 ifTrue: [self addInTruck: 2.
Ny self reTask
o]
. []
).'{'
:‘,'.
3
o R Getting a new worker for loading a truck."
D
l.":
:0'0. 89

N y - ¥ ¢ - CAPE P AL AP S e R I T N) SR R
oy Cal Sy (4 -(.;’.;"._:..'.'-’;\ Ll ‘..'(-“\’_r\ PR . . NS e ~ e o .‘y",.y -\'.Y “n 'y} o N
A O AL XA L OGO ol A et I WIRY o 1 5 1 1 Ry Y - E . A Al DA 2d Ah NN

N - PR T . - Y iy " ol vab nay ¢ a g vuUwy Yy = W'vrwwrw'nrv.xj

;%' | taskOutTruck: worker | s w |
' worker setldle.

e helpers add: worker. "This worker is ready to work."
) s <- helpers size.
. self deQoutTruck. "Get truck in place for loading."
. "Put helpers to work.
" # number of action for the current number
fy # of unloading workers.
&8 # helpers =s, w= 0 2 4 6
i # -- -——— ———- ——— ———
1 - - - ’
o # 2 - - a2 t
o i 3 - - a2t t
8 # 4 a4 a4 a2t t
A:* # 5 a4 ast azt t
" # 6 aé a4t azt t

>6 a6t adt azt t
8 #"
U: w <- loadW size.
o (W <- loadwW size) = 0
O ifTrue: [self otwO:s)
::. ifFalse: [w = 2
B ifTrue: [self ctw2:s]
-2 ifFalse: [w = 4
® ifTrue: [self otwéd:s]
2N ifFalse: [w = 6
L ifTrue: [self reTask]
E) ifFalse: [self print:

[('error: ',

e (w printString),
v\ ' workers are
oy loading a truck.'))
o] 1 1).
“:"

| otwO:s
o s > 5 ifTrue: [self addOutTruck: 6. self reTask]
Y ifFalse: [s > 3 ifTrue: [self addoutTruck: 4]]
Ko | otw2:s
55 s > 3 ifTrue: [self addOutTruck: 4. self reTask]

,] otw4d:s

‘3 s > 1 ifTrue: [self addOutTruck: 2. self reTask] .
.‘: L | .
- # Return the first taskClass with bodies and
7 # no workers allocated.
)" 1]
. | noWorkerTask | tl val |
"o val <- nil.
W (tl <~ taskList first) notNil ifTrue:

[val <- self nwt: tl].

:. 90

O S I e R B e g e B e T L T e T
vt \ 'u. 'v!ﬁ‘n L) q. gy ’ .. ‘)' j ll. 3 '!.. »

PR A A S A I T IR I <. LR R R T S I IR SR I WY SR

Wt N A TS TN T AT T L I RSy
-".-J'.4f SO, .(\ 'r.)- PCARAC : " “

b
Yy X)

P

P

kA ~val.
& | nwt: tIten |que wkr tsk|
RX tItem isNil ifTrue: [~nil).

que <- tItem first.
K wKkr <~ tItem next.
MU tsk <- tItem next.

(que isEmpty not and:[wkr isEmpty])
B ifTrue: [~tItem].
: ~self nwt: taskList next.

¢ T ettt Return the taskClass with the largest
N back log. With workers working as a factor."
%- | bigestQ | €1 val |
i val <~ self bigQ: nil
size: 1
task: taskList first.

AY ~val.
2
>
‘o | wkrBodys:wkr |qw]|
* qw <- 0.

wkr do: [:w| (w taskObj body) notNil
o ifTrue: [qw <= gqw + 1] J.
.:f' ~qw
» | bigQ: bItem size: bSize task: tItem
‘ | que wkr tsk gs qw t tmin tmax ws nSize |
"y tItem isNil ifTrue: [~bItem).
i que <- tItem first.
oA wkr <- tItem next.
K tsk <- tItem next.
" que isEmpty not ifTrue:
" [gs <~ que size.
¢ t <- tsk new.
""» tmin <- t min.
{ tmax <- t max.
N ws <= WKr size.
W gs <~ gs + ((self wkrBodys: wkr) / tmin).
- ws < tmax ifTrue:
.. [wkr isEmpty ifTrue:
2 [self print:[('should not happen.
s tItem = !,
- (tItem printsString))].
= nSize <- gs.
-]ifFalse:[
P nSize <- (gs * tmin) / ws.
¥ “\-] .
R
i nSize > bSize ifTrue: [bItem <- tItem.
&
N
> 01
%

A ALY ..‘:_({:‘

ALK AL AL U A W Ao TANRS]‘ o X e 4 L \‘a. ,5.3‘_1.3‘1“_‘3‘} A2

R bSize <- nSize.
o ~self bigQ: bItem

o size: bSize
“ task: taskList next.

o4 # Start a worker doing a task.
LY, "
o | stairt: taskl with: worker | 1 wkr tsk min | -
e taskl first.
v’ wkr <- taskl next.
N tsk <- taskl next.
by min <- tsk new min.
& 1 <- List new.
ot min = 1 ifTrue:
“ [wkr add: worker.
W 1l <~ List new.
g 1 add: worker.
‘b' ((worker task: 1 create: tsk
,i) setCP: self

) scheduleNow.
] ifFalse: [
-? worker setldle.

3 helpers add: worker.

K

: helpT <- taskl.

)].
KT | startHelp: worker | 1 wkr tsk min w |
kL helpT first.

(" wkr <- helpT next.
7 tsk <~ helpT next.
" min <- tsk new min.

] helpers add: worker.
4 helpers size >= min ifTrue:

. [1l <= List new.
o min timesRepeat:
; [1l add: (W <- helpers remove).
0 ' wkr add: w.

((worker task: 1 create: tsk

) setCP: self
) scheduleNow.

].
helpT <- nil.
self reTask.

"Add a number of workers to the job of unloading."
| addInTruck: n | 1 h |

n:sta_ . 2:1p 3:1p+l1 4:2p 5:2p+1 7:3p+1"

"The 0dd man's job is to get onto the truck."

92

e
XA

n odd ifTrue: [unloadw
add: (h <- helpers remove setWorking).
self print:[((h printString),
' jumps on the truck.'))

whileTrue:

<=- n - 2.

<= List new.

add: (helpers remove).

add: (helpers remove).

((1 first) task: 1 create: Unloader
) setCP: self

scheduleNow.

do: [:w | unloadw add: w].

Fa el ol dite o)

Pt~

1.

"Add a number of workers to the job of loading."
addoutTruck: nw | 1]
"nW:start 2:1p 4:1p+2 6:2p+2"

1l <- List new.
nW > 2 ifTrue: "Two men get on the truck."
[2 timesRepeat:
[nw <- nWw - 1.
1 add: (helpers remove setWorking).
] 1.

1l notEmpty ifTrue: [
self print:[((1 printString),
' jump on the truck.')].
l do: [:w | loadw add: w].
].

[nW > 0] whileTrue:
[1l <- List new.
nWw <- nW - 2,
1l add: (helpers remove).
1l add: (helpers remove).
(((1 first) task: 1 create: Loader
) setCP: self
) schedule: 1.
l do: [:w | loadW add: w].

Moo Handle Incomming bodies. (next)"
unloadTruck: tObj |bdy t]
bdy <- self unloadl: toObj.

bdy notNil ifTrue:
[tObj scheduleAfter: (tObj taskClock)].

93

- o

- -

e - -
o g - - - e A gt

e g >

-

|

~ bdy.
unloadl: tObj iwl bdy|
wl <- (tObj workers).

bdy <- tObj body.
tObj body: nil.

self put: bdy by: wl

on: unloadQ

msg: 'completes unloading, of'.
bdy <- nil.

self moveOutOverFlow: wl.

self deQinTruck.

(inTruck notNil and:
[(self testIdleInTruck: tObj) not])
ifTrue: [bdy <~ self

getBy: wl
from: inTruck
msqg: 'starts unloading, of'.

1.

bdy notNil ifTrue: [
bdy enter.

JifFalse: [“"Free the workers."
self freeReTask: unloadw.

].

~bdy

"Free the workers."

—-—— Are there too many trucks?"
moveOutOverFlow: worker | trk |
fowarding ifTrue: [
(trk <- enterQ remove) notNil ifTrue: [
self foward: trk by: worker
] 1.

foward: trk by: worker
('] foward: ', (trk printsString), ' by: ',
(worker printString))print.
self print:[((trk printString),
' is fowarded by ',

(worker printString), ',"')].
self print:[(' to drive off
to the next station.')].

trk leave: truckNext timeTo: timeTo.

R Handle Outgoing bodies. (next)"
loadTruck: tObj | bdy t |
bdy <- self 1d1: tobj.

94

IRt PN o AL
.ﬂ.*-',_, AN \-\.};U"\ -~ \-W!H -Jrn_,.'&

bdy notNil ifTrue:
[tObj scheduleAfter: (tObj taskClock)].

h A bdy.
g | 1dl: tObj jwl bdy|
[
) wl <- (tObj workers).
. bdy <- (tObj body).
Lo tObj body: nil.
' self put: bdy by: wl
& on: outTruck
% msg: '‘completes loading, of!'.
d
~ self put: bdy by: wl on: goneqQ.
' bdy <- nil.
‘a self deQoutTruck.
o (self outTruckLoadable
X< and: [(self testIdle: tObj) not])
$ ifTrue: [

bdy <~ self
. getBy: wl
- from: loadQ
- msqg: 'starts loading, of'
o 1.
o

bdy notNil ifTrue: [demon body: bdy

. delta: (bdy exit: self).
] JifFalse: ["Free the workers."
4 self freeReTask: loadw
b 1.
M ~bdy
K-
b "Move the truck to the unloading area."
.2 | deQinTruck |pt|
- self moveOutOverFlow: nil.
' inTruck isNil ifTrue:

pt <- enterQ remove.

inTruck <- pt.
3 JifFalse: [
™ inTruck isEmpty ifTrue: [
x self print:[((inTruck printString),
: ' exits.')].
- inTruck leave: nil timeTo: timeTo.
. inTruck <~ nil,.
» self deQinTruck.
-]
v,]-
-
2
‘ 95
v
Wt

P OO A AT
A M AT
........ 2 3 3 alla B o)

P TR

R aELIgY.
N

‘;\"_‘- K ,“_p

.- ’ - - a " a T -
R P PR s
.

l;:’
(A
X "Move the truck to the loading area."
b | deQoutTruck |pt|
» self moveOQutOverFlow: nil.
%; outTruck isNil ifTrue: [
) (pt <- exitQ remove) notNil ifTrue: [
4 outTruck <- pt.
N] JifFalse: |
.j- (outTruck size >= truckFull or: [
W loadQ isEmpty and:
(1 [self loadingBodys not]]
i) ifTrue: [
W self print:[((outTruck printString),

! ' exits.')].
» outTruck leave: truckNext
timeTo: timeTo.
o outTruck <- nil.
self deQoutTruck.

—u])
[
w "Are there Bodies being loaded."
N | loadingBodys
\ ~ loadW inject: false into: [:p :w |
" p or: [w body notNil]
-]
,f | outTruckLoadable | bdyInTruck|
[(outTruck notNil and:{ loadQ notEmpty])
ifTrue: [
. bdyInTruck <- outTruck size.
:} bdyInTruck < (truckFull - 1) ifTrue:]|
e~ ~true
.”]JifFalse: [
,; (bdyInTruck < truckFull
b and: [self loadingBodys not]
)) ifTrue:(
N ~true
e 1 1 0.
[~false
e
" | procDemon
. ~nil.
3
& | freeReTask: wl | 1|
N 1 <- List new.
‘ wl do: [:w | w body isNil ifTrue: [
= 1l add: (wl remove: Ww) -
Zi self reTask: 1
! '.- N
¥
- [put: body by: worker on: outQ
. self put: body by: worker
4 -(":
W
<,
L 96
W
' s
SN RS A T L R e e R o SRR R M e
§ 1} - ol gl 1 f e e’ B Ll N . had » L * H

s
b
v e,
;Eé on: outQ msqg: nil
o | put: body on: outQ
Fﬁ self put: body by: nil
' on: outQ msqg: nil
3?& | getBy: worker from: inQ
j ~ self getBy: worker from: inQ
:j msg: nil
}gﬂ
’ N | put: body by: worker on: outQ msg: msg
i (body notNil) ifTrue: [
AN (msg notNil) ifTrue: |
B . self msg: msg wkr: worker bdy: body.
o]
g:"‘ outQ add: (body deathAt)
e put: body
.]
1300 "aquire a body from the inQ"
:j | getBy: worker from: inQ msg: msg | body |
a0 ((body <- inQ remove) notNil) ifTrue: [
,: self msg: msg wkr: worker bdy: body.
-'.. 4] L]
. ~ body
e
e W
oY | msg: msg wkr: worker bdy: body
AN (msg notNil) ifTrue: [
Wl self pr:[((worker prlntstrlng), vy,
. msg,
15; (body prlntstrlng), .)]
-1
W | free: tObj when: bdy from: wkrs
bdy isNil ifTrue: [
i) (tObj workers) do: [:w | "reTask"
s wkrs remove: w
i b
K | listTrucks | tl1 que wkr tsk b |
— R L e L L e '] display.
baa ! idlers=', (iTask idlers printString)
G Jjdisplay.
[N [inTrk=', (inTruck printstring),
! ernterQ=', (enterQ printString)
]Jdisplay.
[unloadw=', (unloadWw printString)
ldisplay.
[helpers=', (helpers printString),
! helpT=', (helpT printString)
]Jdisplay.
s 97
;..I),
48]
&J
:'." .) el O T e e e R o D LR L (Y

o) . . o e e e Rt A T i n e Bt A Pa Bk T m T E e n kK
W, W™, o * . 2 o < MRS Ry ﬂ- e " -
s "'-" " T MOt "'("-' ",) R0 NN & Koakn a0 ‘ *N’ iy " * ,4' AT A Q’;

ﬁ%" - o >
AP,
R
R
A . . .
R ! [loadQ=', (loadQ printString))display.
ng [loadw="', (loadW printString)]display.
#
v [outTrk=', (outTruck printstring),
e ! exitQ="', (exitQ printString)
Buts,]Jdisplay.
R 1 e o o e o et e S - — - - —— - = -] 1
Eata [] display.
‘ .
R MNemmmmmc e Demon Queue listing messages."
" | countls
Qﬂf ~countofbdys.
N
..‘}5 | countBdy: b
\ﬁ, countofbdys <- countofbdys + 1.
:"'n ~1
‘ | countQue: que | ent |
o countofbdys <- countofbdys + (cnt <- que size).
bovs ~cnt
",::\
ivf | countWrks: wl | b cnt bset |
’ cnt <- 0.
- bset <- Set new.
O] wl do: [:wkr |
-t (b <~ wkr body) notNil ifTrue: [
v (bset includes: b) ifFalse:|
oS bset add: b.
- cnt <- ¢cnt + 1.
- countofbdys <- countofbdys + 1.
o 11 1.
o ~ cnt
oy | countTruckQ: trkQ | cnt |
S cnt <- 0.
iel trkQ do: [:trk | cnt <- cnt +
» (self countTruck: trk)].
*Q- ~ cnt
a::
N | countTruck: trk | ent |
)fy trk notNil ifTrue: [~trk size].
o Py . A Q
Y': [gcntReport
e (' @ Queues:', gname,
L 1@Q@', (self printString))print.
5 (' @ ', (self timels printString), gcnt,
) 16$$' (self printString))print.
on | append: tsk to: ent | t |
' gent <- gent, (ent printString), ! ',
\&2 gname <- gname, tsk, ' ',
!]
| listTask: taskL | tl que wkr tsk cnt reportP |
3
-r:: 98
L) = '
’G‘..

.

LI

P

LR I R

LA

o s
P

'
DA

[)
.

AN]

.
»
‘<.
-,

» 0%y

tl <- taskL first.
[tl notNil] whileTrue: [
que <- tl1 first.
wkr <- tl next.
tsk <- tl next.
reportP <- tl next.
reportP ifTrue: [
(' @ ', (tsk printsString),
! =', (wkr printString),
! =', (que printString))print.

cnt <- (self countQue: que).
cnt <- cnt + (self countWrks: wkr).
self append: (tsk printString) to: cnt.

('@ ', (tsk printString),
' =', (wkr printString),

! =', (que size printString)) print.

tl <~ taskL next.
7.

| listInTruck | ent |
countofbdys <- 0.
gcnt <=~ ! ',
gnanme <- ‘! ',
self pr:[(* [', (self printsString),

"adds the time."
'] e ').

iTask reportOnWorkers.
cnt <- (self countTruck: inTruck).
(' @ unloadW=', (unloadW printString))print.

cnt <= cnt + (self countWrks: unloadWw).
self append: 'inTrk' to: cnt.

(' e helpers=', (helpers printString))print.

| listOutTruck | tl que wkr tsk b cnt |

)t
hi,

» 5ﬁ e LJ
A4, '4“ W, ‘I\LP"‘

cnt <- (self countQue: loadQ).
(' @ loadW=', (loadW printString))print.

cnt <= cnt + (self countWrks: loadW).
self append: 'load' to: cnt.

cnt <- (self countTruck: outTruck).
cnt <- cnt + (self countTruckQ: exitQ).

99

o w « - e - N e m W, A L T e .
{ LYY 3 N I -

-

Y

\’..‘\: .

&

- <..~.‘-- ‘-. -
ARG WA P, RS

fq self append: 'outTrk' to: cnt.

N self append: 'Bdys' to: (self countIs).
| self append: 'ThruPut' to: (goneQ size).

. self countls > maxBodys

. ifTrue: [fowarding <- true]
I\ ifFalse: [fowarding <- false].
< self gcntReport.

i | 1istoutTC | tl que wkr tsk b cnt |

WY self countlIs > maxBodys

R ifTrue: [fowarding <~ true]
DX ifFalse: [fowarding <- false].
) self gcntReport.

oy
SRR

A 100

UL C R

T WA) .,4 - R W r S A R AT .
‘l L B '
* “A .."‘ ?. , , A ot o é ." ..'l !" N 9‘.‘ 09 5\ ‘.‘.L ‘3 (O &)) WY, . '. ﬁ' ".".. .l (3 'Y * 3 " "

Class DemonTask

M Process to display queues., "
Class DemonTask :CollectionClass
| rate go name deltaBodys nBodys |

(startUp
deltaBodys <- Clock new,
nBodys <= 0.

rate <- 60.
go <- true.
| prefix: echelon
~echelon, 'Demon!'.
| rate: r
rate <- r.
{ body: b delta: ck
deltaBodys <- deltaBodys + ck.

nBodys <= nBodys + 1.
| stop

self listWorkerTask.

super terminate.
| next

self procDemon.
self listWorkerTask.

[' @ Bodys: ',
(self timels printsString), ' ',
(deltaBodys printstring), ' ',
(nBodys printstring), ' ###°',
(self cp printString) J]display.

self lightsOut ifTrue: [

self sch: (self morning: (self timels))
JifFalse: [

self schedule: rate

1.

101

g
)
5& Class Environment
)
§~ Class Environment :Identity | rootCp |
ﬁy [startUp "CcI 1v
s | res | "store the restart instance."
N t ' print.
'
oy self sch: ((res <- (self
ﬁ; create: ReStart)) start).
100
“W YootCp <- res go:self. 1
e _
mg | prefix
R AVE!]
33 | next fwl w|
o] ['| reStart timeIs=',
i (self timeIs printString) jJdisplay.
o (wl <- (self create: ReStart)
*, reStart: self) notNil ifTrue: [
3 ['workload = ',
Ny (wl printString)] display.
K> rootCp reStart: wl.
' ~true
LR].
A self terminateNow.
-)
K o
i
30
) 2 _:
':“4
-
e
o
W
',
W
oy
"
A .
I
"':' i
R s !
g:!h
29¢ 102
y dh \
et
o)

>y W

By T N W, SRS
A EHITRITLYS,

(L OOU O T e

TN | AR A el S 5]
b O A W AN T s S KR SN ™ M

_m

Class GenTruck

" Adds bodies to truckQueue."

Class GenTruck :CollectionClass
| queue rate bdys fill uniFill

trucks timeTo beenToCP |

[startUp
beenToCP <~ O.

- rate <- 25, "default self schedule rate"
bdys <- 0. "number of bodies to consume."
trucks <- 0. ‘number of self schedules."
timeTo <- 10. "how long get to CP."
fill <- 0.

| timeTo: t
timeTo <- t.

| setlIP

beenToCP <- 2.
| setCP

beenToCP <~ 1.
| rate: r

rate <- r.
| rate

~rate
| prefix: echelon
~echelon, ‘'gen'

" deliver all bodies in less than 6 hours." +
| bdys: b
bdys <- b. "work load."

(bdys < 7200 and: [bdys > 0]) ifTrue: [
rate <- 7200 / bdys roundTo: 1.
JifFalse:[

rate <- 1.

]C

['Nbodys = ', (bdys printString) J]display.
| trucks: b

trucks <- b.
| queue: q

queue <- d.
| £ill: min to: max | a b |

b <- max + 0.5.

£fill <- min.

uniFill <- Uniform new initialize
from: a to: b.

"sScheduling"
| next
(bdys > 0) ifTrue: [

103

oy i i
RaR
B
el
4 beenToCP > 0 ifTrue: [
33 bdys > 24 ifTrue:
5 ‘ [bdys <- bdys - 24.
th) £i1l <- 24.
‘ self schedule: rate]
g ifFalse: [£fill <- bdys].
Qﬁ' self makeTruck.
K0] ifFalse: [
ﬁ@ £fill <- uniFill next roundTo:1l.
B ((bdys = £ill) >= 0)
ifTrue: [
o bdys <- (bdys - fill).
oy self makeTruck.
:M’ _ self schedule: rate
A] ifFalse: [
v £fill <- bdys.
self makeTruck.

iy self print:[((self printString),
Sl ' Terminates.')].

{r]]
Q] ifFalse: [
NN ((trucks <- trucks - 1) < 0) ifTrue: [
I self print:[((self printString),
redd ' Terminates.')].
P JifFalse: [
G self makeTruck.
é?. self schedule: rate
o] 1.
g “Private"
q'.:: | makeTruck | t2 |
i self nightTime ifTrue: [
ot t2 <- timeTo * 2.
o JifFalse:[

B t2 <- timeTo.

Tag b .
ﬁ& ('>> makeTruck t2="', (t2 printString),
f‘ ! fill=', (£fill printString))print.
ot
é«- _ “(((((self create: Truck) setCP: (self cp)
e) goingTo: queue
g) beenToCP: beenToCP
Y) £ill: f£ill
ﬁ;») schedule: t2. "How long it takes to
‘?i get to the queue."
O)
o
'.\j

<

ol)
o
i
'y ;’
L 104
Pl
K

N AT T N N N L R e L Lt Tt e SO N SR A
RS {_-.4',;.*,3";,,*.-,,}'.-,1);.-,3.~-;{.-n{ m‘.:z.*.ﬁsjyi-&s" "'A".}ﬂ

RN
Qf Class GlobalData
i
) Class GlobalData :UserData
28 | evQ "The environment Queue."
v uniqueName "Dictionary of unique name counters."
s curTime "Current Time Clock."
e prTime "Clock as of the last print occured."
o | _
-~ [new
~ evQ <- SList new.
: uniqueName <- Dictionary new.
] curTime <- Clock new incHour: 10.
§{ prTime <- Clock new.
R
™ | print: s
$§ ((prTime = curTime) not) ifTrue: [
+ ('@ ', (curTime printString)) print.
. prTime set: curTime.
o 1. .
“i (' @ ', s)print.
b
K "Accesing"
4 | timeIs
. ~curTime
S | eventQ
- ~evQ
RS | userData
i& ~self.
"Setting”
W | timeIs: t
W AcurTime <- t.
o "---- Return a post fix to make the name unigue."
" | genNum: prefix | n |
A (n <- uniqueName at: prefix
ifAabsent: [nil]) isNil ifTrue: [n <- 0].
D uniqueName at: prefix put: (n <- n + 1).
e A n.
'
]
o
3
)ﬁ
]
b
y : ‘
\.: \
v 105
+
T
s

n, 5;\’4.' ."U'\ PN ;, Ce L ; vr, ﬂ_“ - p '.‘ " S ‘;_\. ?.',{.‘* :_{.:’s}.._-, 'r}"};-;.}{«\}. .
x o R . 3 i ML o .) X M il B it R

I LA A
Lot A LA 1) R

‘F ‘b ISR
g t bl
e AN

Class Identity

i Class Identity tUserAccess
) | name globalData |
[idstartUp: gd
"Every one must get access to the data store.™
globalData <~ gd.
self userSetUp: (globalData userData).
name <- self class printString. r
| idStartUp: gd name: aName
"Every one must get access to the data store."

G
s &

» .l.“. .

fals .

&

by globalData <- gd.
i self userSetUp: (globalData userbData).
¢$ name <- (aName, ((globalData genNum: aName)
b printstring)).

n make a new instance if a simulation object with the
K. name fixed up and the global data in place. "
3 | create: aClass | inst pre |

inst <- aClass new.
- ((pre <- inst prefix: (self printString)) isNil)
ifTrue: { pre <- inst prefix].

-
R

W3 inst idstartUp: (self globalData)
: name: pre.

e inst startUp.

. ~inst

) N

-~ "report output"

o | pr: block

X ~ self

; | print: block

, globalData print: (block value).
-~ "Accessing"

- | globalData

- ~globalData

e | timelIs

~globalData timels

- | timeIs: t
o ~globalData timelIs: t
%)
N | asString
Aname

| printString
. Aname
al | name: n
"
u
[~
B, 106
N
-
’n

LR PR AT LR Y <1 7 PR A SIS ST NP I T e A o D I e e L T N L YA, S |
] -l. P N WA AT AP IAT IR ';',")‘;‘.- '.r‘.»'";"'.-“.-‘.- e e LS TP :. _('(}"-(’ e .'}-_*-‘!"._
~ y i o N p | .. L. N Oy

.....

F-'I'.I'Il'I-'--.-..l--'-.-l-.l--"-N'-"-!'HFJ—"-"HH‘N.'W"-UH'!N'H-FH'FH-$

name<-n.

| prefix
~self class printString
| prefix: mother

~nil
"Scheduling"
| schedule
(globalData eventQ) add: (globalData timels)
put: self
| sch: clock
(globalData eventQ) add: clock
put: self

| scheduleAfter: clock
self sch: (clock + (globalData timels)).

| scheduleNow
self sch: (globalData timels)

{ schedule: hour after: min | ¢ |
(min < 100 and: [hour < 24])
ifTrue: [self sch:((((Clock new
)yset: (globalData timels)
YincMin: min

|)y incHour: hour)
‘] 1ifFalse: ['schedule error' print j.

| schedule: min

self sch: (((Clock new
)yset: (globalData timels)
YincMin: min)

| schSec: sec
/ self sch: (((Clock new
b yset: (globalData timeIs)
! YincSec: sec)
]
107

G o e e T w - D W DRI N . e T TR .<.¥~~'<,.-.‘- TR % Lt N et e e
3 > E v . . - k . ! N - ~ Pl « o N

i AA S

L e e WY o L aah sk oo are Latd

o
-..' N

S
i r

Class IdleTask

N o,

Class IdleTask :Identity

’ "Data'"|
2 cp
7, idlers
W timesIdle maxIdle go "for ending"
3 allWorkers

' |
- [prefix: echelon
rﬂ ~ echelon, 'Idle'

| startUp
idlers <- List new.

Dh) allWorkers <- List new.

maxIdle <- 12.
- go <- true.
b, timesIdle <- 0.

" self start.

5 | setCP: cpoint

o Cp <- cpoint

O | personal: n

" ['personal = ', (n printString) Jdisplay.
O n timesRepeat: [allWorkers
q%? add: (idlers add: ((cp create: Worker)
< setCP:cp))].

v | reportOnWorkers |s n|

; S <= !'f,

) n <- 1.

e allWorkers do: [:w

rag s <- s, ! ', (w printTime).

0N (n <= n+ 1) > 3 ifTrue: [

" (' @', s)print.

S <= e .
ol n <- 1.
1O]).
< n>1 ifTrue: [(' @', s)print).
o
::l !’
- | idleWorker: w
. w sleeping ifFalse: [
S idlers isEmpty ifTrue: [
o maxIdle > 0 ifTrue: [
{:2 go ifTrue: [self schedule: 5]
% ifFalse: [self schedule: 60. {
go <- true.

ey 11).
ﬁ; w setlIdle.
"y idlers add: w.
l.,'.].
{'p 108

| idlers
~idlers.

| next | rt |
timesIdle <- timesIdle + 1.
rt <- cp reTask: idlers.

rt ifTrue: [timeslIdle <- 0.].
timesIdle >= maxIdle ifTrue: [
self stopable ifTrue: [
maxIdle <- 0.
cp stop.
[(self printstring),
' terminates.']display.

].
go <~ false.

1.

109

» L s sk oah Anl and eal Gl i L e gl St afR ot gk ath alh Sid alih acd ol ull oha- ARl alhar uat R Jast juk Ball g R
N 1
N
Ll
iﬁ' Class IntermediatePoint
';:':"

3

ﬂﬁ‘ Class IntermediatePoint :CpTrucks

R "Data" |

. evacw ckldw idw "Workers doing tasks"”
<0 packW moveWw ddw miscW

¥ "pPlaces to put bodys."

21{« evacQ ckIdQ idQ goneQ

e packQ moveQ ddQ miscQ loadQ

HE taskList "a list of triples

" (see makeTaskList)."

A cplist "a list if objects

o for restarting."

el battleZone "Lights out at night."

ey "Methods" |

e [prefix: echelon | ch |

. [IP | echelon = ', echelon]display.

.‘-"J

Ko ch <- echelon at:1.

- ch == $x ifTrue: |

'fb A (echelon copyFrom: 2 to: (echelon size)), 'i'
1 .n] °

" A XXX] J
- -

e | startUp

A ! IP | startUp ', (self printString))display.

7

P super startTrucks.

. self startQueues.

Ll

~*ﬁ self taskList: (taskList _ self makeTaskList).
S battleZone <- true.

Qt' | truckFull: bdys at: clock

] (((((((self create: GenTruck) setCP: self

's* Jqueue: (self enterQ)
A) setcCP "beenToCp"
et) timeTo: 180 1180 minutes"
Lre) bdys: bdys
A ') rate: 0
—) sch: clock.
o ('~ truckFull: ', (bdys printstr%ng), : at: ',
NN (clock printstring))print.
:‘ .h‘ Aselfc
)
iy | reStart: wl | bdys trk cl | . _
['IP | cplList = ', (cplList printString)

o]display.

N, ['IP | wl = ', (wl printString) J]display.
8 cl <- List new.
B cplList do: [:c | cl add: ¢]. "Copy."

" wl do: [:x |
a3
o 110
=Y

A Aan b Aok aon 2 0 Aok BT Sa 2 2 “1

!

1 ['IP| X ="', (x printString),
k ' cl ="', (cl printString)
o]Jdisplay.
i cl first = self ifTrue: [
i (cl remove) selfReStart: x
.,]ifFalse: [
I x first = 'I' ifTrue: [cplist add: (
N ((self create: IntermediatePoint
N) truckNext: (self enterQ)
‘0) deceased: x)
b JifFalse: [
. x first = 'C' ifTrue: [cplList add: (
o8 ((self create: CollectionPoint
‘o) truckNext: (self enterQ)
A) deceased: x)
' l]ifFalse: [
(cl remove) reStart: x
.]]] l.
Y
n | selfReStart: w | trk bdys ch |
] { 'IP] w ="', (w printString) J]display.
ch <- w first.
bdys <- w next.
S trk <- (((((self create: GenTruck) setCP: self
-)gqueue: (self enterQ)
3) £ill: (self truckMin)
b to: (self truckFull)
)} bdys: bdys
i) schedule: 1.
% (((((self create: GenTruck) setCP: self
;} Yqueue: (self exitQ)
X) rate: (trk rate)
)) trucks: (bdys / 6 roundTo:l)
o) schedule: 30.
A,#’
K | deceased: list reStart: rs | car |
e
m list remove.
. ['IP list=', (list printString) J]display.
WY cplist <- List new.
‘Q car <- list remove.
A ['IP car=', (car printString))display.
: car first = 'I' ifTrue: [
cplList add: (self selfStart: car). ,
& JifFalse:[i
fﬁ ['error: IP must be first.' Jdisplay. ‘
].
" [list first notNil] whileTrue: [
¥ car <- list remove.
l..
[~
.
k3 111

Lol

B L e N R RN

I3 { , b
¢ o VRRRNYS i W,

N ST -

PRSI CA R « 4
‘\ ;“‘ ")”‘/'i K
.S o)

"‘«' PAMES .
b ,"!L.i'a‘l

W
..L.Q N e i

» -‘_ <* o« .——l <. Dy
NN VA
R a4

2 ¥

h T T A,

P A

i
i

o,
Al -‘"q’ AP T

['IP car=', (car printString) J]display.
car first = 'I' ifTrue: [

cplist add: (

((self create: IntermediatePoint
) truckNext: (self enterQ)
deceased: car)

JifFalse: [

car first = 'C' ifTrue: |

cplist add: (

((self create: CollectionPoint
truckNext: (self enterQ)
deceased: car)

]ifFalse:[
['IP error: bad input car= ‘',
(car printstring),
! cdr= ', (list printsString)

]Jdisplay.
)1 1. , _
{'cpList = ', (cplist printString)]Jdisplay.
rs fowardTrucksTo: self.
selfstart: list | foo pers bdys time trk]

foo <~ list remove.
pers <- list remove.
bdys <= list remove.
time <- list remove.

trk <= (((((self create: GenTruck) setCP: self
yqueue: (self enterQ)
) £ill: (self truckMin)
to: (self truckFull)
) bdys: bdys
) schedule: 1.

((((((self create: GenTruck) setCP: self
) queue: (self exitQ)
) timeTo: time
) rate: (trk rate)
) trucks: 20
)} schedule: 30.

(((self iTask: (self create: IdleTask))
setCP: self

) personal: pers
) scheduleNow.

((self demon: (self create: DemonTask))
setCP: self
) schedule: 10.

makeTaskList | 1 |
1l <- List new.

112

OIS BNy ML e T AR
Ty W m A
RO N TR

TN TR Y M T TR Te e TR T aT et Rt ‘e e, - .
N AT A e R B Ol (N N PR e R g

)
¥

-
ne

-
-
.

)
'--
B

P
24 *

(self
(self

(self

(self

(self

(self

(self

makeTL: evacQ

with: evacw task: Evac).

makeTL: ckIdQ

with: ckIaw task: CkI4d).

makeTL: moveQ

with: moveW task: Move).

makeTL: idQ

with: idw task: Id).

makeTL: packQ

with: packw task: Pack).

makeTL: ddQ

with: ddw task: Dd).

makeTL: miscQ

with: miscw taskN: Misc).

the queues for the Collection Point."

1 add:

1l add:

1l add:

1 add:

1 add:

1 add:

1 adad:

~1

"12ake
startQueues

evacQ <-

idQ <-

ckIldQ <=

moveQ <-

packQ <=

ddQ <=-

miscQ <=

goneQ <=

loadQ <=

evacW <=

14w <=

ckIdw <=

moveWw <=

packw <-

adw <-

miscwW <-
lightsOut

battleZone

~false.

NEXT

procEvac: tObj |
wkr <- tObj workers first.
bdy <- tObj body.
tObj body: nil.

self
List
List

List
List
List
List
List
self

List
List
List

List
List
List
List

ifTrue: [

unloadqQ.
new.
new.

new.
new.
new.
new.
new.
loadq.
"Workers"
new.
new.
new.

new.
new.
new.
new.

~self nightTime].

wkr bdy |

bdy notNil ifTrue:|

-‘\\\"-\\\'ﬂ’\x

\')‘-\.' ~

113

i - P
.,r..rq- ___..-r\ P e T e
P S x& Sl 45 00 }A;;;hgtumaua

gy

‘,”' PRI IETY SLPUILIT ST PT W T - Ak < - 9 4 YWV . - ey - TR U WY YW YW W W 7w e vy
»:::'

it bdy beenToCP ifTrue: |

R self put: bdy

eﬁ@ by: wkr

a0 on: ckIdQ

L msg: 'completes Evac#, on'.
o JifFalse: [

Y self put: bdy

1A by: wkr

N on: 1idg

Qﬁﬁ msg: 'completes Evac form DD1077, on'.
;] 1.

o (self testIdle: tObj) ifTrue:[

gr; JifFalse: [

ﬂ\. bdy <- self getBy: wkr from: evacQ
A msg: 'assigns Evac # to'.
i 1.

f (self free: tObj when: bdy from: evacWw.

2]

:ﬂj ~bdy.

o

N

u-_.

3 | procId: tObj | wkr bdy |

Lo wkr <- tObj workers first.

e bdy <~ tObj body.

Lo tObj body: nil.

R self put: bdy

iﬁ by: wkr

o on: packQ

A msg: 'completes Id and DD forms, on'.
Vi

. (self testIdle: tObj) ifTrue:(

Qs bdy <- nil. "reTask"
o JifFalse: [.
hQ: bdy <~ self getBy: wkr from: idQ
Lo msg: 'starts to I4d'.
g].

o self free: tObj when: bdy from: idw.

SNy ~bdy.

'N_.A'H

N i"

A

| procCkId: tObj | wkr bdy |

. wkr <~ tObj workers first.

o bdy <~ tObj body.

o tObj body: nil.

B

o self put: bdy

WL by: wkr

st

L) 3 ‘,

) 'éd

o 114

(] 2]

NV AT PP Yeheie Al R o TR e LRI RAT PPN L TS S . g T n X s DT A Ty
e ARG S e T T LI L) ety Qg :"l‘-‘l'i«.‘a‘&‘!\'. HEYW RN

- n R

)
¥

D v N . . -
o I o PR T L Al T e
‘.u’,"o !‘ 4 :l X " e A PN 4 -

on: moveQ
msg: ‘'completes CkId and DD forms, on'.

(self testIdle: tObj) ifTrue:[

bdy <=~ nil. "reTask"
]ifFalse: [
bdy <- self getBy: wkr from: ckIdQ
msqg: 'starts to CkIQ4'.
].
self free: tObj when: bdy from: ckIdw.
“bdy.
| procPack: tObj | wkr bdy |

wkr <- tObj workers.
bdy <- tObj body.
tObj body: nil.

self put: bdy by: wkr
on: ddQ
msg: 'completes Moving, of °'.

(self testIdle: tObj) ifTrue:[

bdy <- nil. "reTask"
JifFalse: [
bdy <- self getBy: wkr from: packQ

msg: 'start to Pack and Move'.
].
self free: tObj when: bdy from: packW.
~bdy.

| procMove: tObj | wkr bdy |
wkr <- tObj workers.
bdy <- tObj body.
tObj body: nil.
self put: bdy by: wkr
on: ddQ
msg: 'finishes Moving, of '.

(self testIdle: tObj) ifTrue:|

lifFalse: [
bdy <- self getBy: wkr from: moveQ

nsg: 'start to Move'.
1.
self free: tObj when: bdy from: moveW.
~bdy.

| procDd: tObj | wkr bdy |

115

S “-"f‘,".- {\'T-

LN A A oL SRR P T AP S G . g v, «
] d -l ' s L]) - . , 3
2 S L R DL L o . '

. < - DALY | DAL LRI
RNy 1“- " Tt s - YOS \'<.\". AN
- v . '] » »

- % o

wkr <- tObj workers first.
(bdy <- tObj body) notNil ifTrue: [bdy setIP].
tObj body: nil.

self put: bdy by: wkr
e on: loadQ
msg: '‘completes DD175, for'.
: self put: bdy by: wkr on: miscqQ.
(self testIdle: tObj) ifTrue:(
1 bdy <- nil
Yy]JifFalse: [
; bdy <- self getBy: wkr from: ddQ
msqg: 'starts to £fill out DD175 for'.
D]-
self free: tObj when: bdy from: ddw.
~bdy.
| procMisc: tObj | wkr bdy |

wkr <~ tObj workers first.
’ tobj body: nil.

self put: bdy by: wkr on: goneQ.

- (self testIdle: tObj) ifTrue:]|
; bdy <- nil.
* JifFalse: [
bdy <- self getBy: wkr from: miscQ
K msg: 'does the miscellaneous task.'.

].
self free: tObj when: bdy from: miscWw.

; ~bdy.
N e e e e o o o > o = —— 1]

P | list
Y self listInTruck.
] self listTask: taskList.
b (' @ goneQ size=',
) ' (goneQ size printString))print.

self listOutTruck.
- | listWorkerTask
h. self listInTruck.

self listTask: taskList.

(' e goneQ size="',

(goneQ size printString))print.

: self listOutTruck.
' (' @ loads=',
‘ (self countIs printString))print.

self reTask.

116

::%” ‘a v "‘\i_ﬁ-‘::; 0%

%4, Class Obj

g "This is the root of all simulation objects"
. "Note that objects can be listed with 'Obj list'."
& Class Obj

, [new
? rself.
O]

. 117

v S AT AN AT T AT

.-\‘ O
v

O SO 3 : S 8 1 e TR
DES N Y ’u St e Dol ot S DN e .'—bh*ﬁtﬁh.ﬂu&..lu‘.‘ Y

.SQ& Class Probability

s Class Probability :0bj
e | randnum |
S [initialize
. randnum <- Random new randomize.
g randnum <- Random new. "
:- | next
Wy ~self sample: randnum next.
Nl | first
- A-1,
| getRandom

¥ A randnum next.

‘_.’:a..-.}‘-"r{:’:{ »
. ?,:.‘*,i,"s

--.
iy
AR

%’
>
P

e
§ 118

R A D A I NI b o Ph ML P ™ o oot ol L S T e L L ot ol € o O o L L DL, a7 e g ST 900 (40
- t4ab “i,“g*“.."“ie.‘*-'. 1.6 8, h“h ‘Jn‘ -.““:“'n‘!"’—'a.-.h‘!: Vg, > g :.I " :‘ o ML 4' n 2 “ /' Rﬂ ‘|£.' AL LY 1 . J‘ ")' g

m
\

e R

Class ReStart

Class ReStart :SuperReStart
| envObj wrkLoad |

(startUp
~self.
e e LT Work Load at time=0."
| cp0
~(self cpWrks: 8 bdys: 3 routeTime: 7).
| cpl
~(self cpWrks: 8 bdys: 87 routeTime: 7).
| | P, TC "
| dIp
~self l1: '1
l: (self ipWrks: 6 bdys: 4 routeTime:
1: (self cpWrks: 4 bdys: 7 routeTime:
| clp 1
~self l: '1°
l: (self ipWrks: 6 bdys: 4 routeTime:
l: (self dIp)
| ipCI2
~self l: (self ipBdys: 6) "iiw
l: (self cpBdys: 50) el
1l: (self cpBdys: 50) wean
l: (self cpBdys: 46) "arc [i2cl]) =-> C3"
| ipCI3
~self l: (self ipBdys: 6)
l: (self cpBdys: 60)
1l: (self cpBdys: 28)
l: (self cpBdys: 59) "arc"
| ipCI4
~self l: (self ipBdys: 6)
l: (self cpBdys: 56)
l: (self cpBdys: 28)
l: (self cpBdys: 31) Yarc"
| ipCI5
~self l: (self ipBdys: 6)
l: (self cpBdys: 0)
1l: (self cpBdys: 27)
l: (self cpBdys: 45) "arc"
l: (self cpWrks: 8
bdys: 14
routeTime: 180) "[c3] -> C4"
| ipCI6
~self 1l: (self ipBdys: 6)
119
ARSI ;:‘ \{_\" \/'.'.J’:('*‘n“ﬂ_.rw.-_;_ :;ﬁ.;_,\;‘-;‘(‘-::::‘-:“- . :':::\,- ~ "._ .

180)
180)

180)

........

W s,

i B

e

A R

P o (% LTS

AV S Y SN g)

0 e e

(self cpBdys: 0)
(self cpBdys: 39)
(self cpBdys: 16) "arc"
(self cpBdys: 39) neg

[ipCI7

~self (self ipBdys: 6
(self cpBdys: 0
(self cpBdys: 17
(self cpBdys: 56
(self cpBdys: 17

"arc "
" C3 "

et e s s

|ipCIs8

~self (self ipBdys: 6
(self cpBdys: 11
(self cpBdys: 20
(self cpBdys: 36

(self cpBdys: O

"arc"
"C3 "

et et st Nt

|ipCI9
~self

(self ipBdys: 6
(self cpBdys: 25
(self cpBdys: 8
(self cpBdys: O
(self cpBdys: 46

es oo

l|arc"
IIC3 "

| ipcI10
~self

(self ipBdys: 6
(self cpBdys: 18
(self cpBdys: 19
(self cpBdys: 7
(self cpBdys: 35

"arcﬂ
"C3 "

P R N F T) T T Oy iy R Sy ey

|| [TC"
| ci2TC
~self l: (self tcBdys: 4)
l: (self cpBdys: 5)
1: (self
l: (self ipBdys: 3)
l: (self
l: (self ipBdys: 1)
l: (self cpBdys: 2)
))

S Access. "

self timels: (self ciltime).
self print: ['--=----- CI 1 ———mme——e ',
~self ci2time.

| reStart: env
envObj <- env.

[(self printString), ' ', (envObj printString)
] display.
self testCI2 ifTrue: [~wrkLoad].
self testCI3 ifTrue: [~wrkLoad].
self testCI4 ifTrue: [~wrkLoad].
120

5 self testCIS ifTrue: [~wrkLoad].
Y self testCIe6 ifTrue: [~wrkLoad].
~ self testCl7 ifTrue: [~wrkLoad].
N self testCIs ifTrue: [~wrkLoad].
Y- self testCI9 ifTrue: [~wrkLoad).
e self testCIloO ifTrue: [~wrkLoad].
B - self print: ['e---- Terminate., ====-- ' .
- ~nil
Meeomccm e Private."
¥
iy | testCI2 | nextTime |
X nextTime<- self ci3time.
» (nextTime <= self timels) ifTrue:
%’ (~false]. "been here before."
e self print: ['----- CI 2 =-=-—-- 'y,
. envObj sch: nextTime. "Store Time." |
Oe| wrklLoad <- self ci2. "more Workload."
‘:: ~true "ok, Run"
A
(o [testCI3 [nextTime |
W nextTime<- self ci4time.
(nextTime <= self timeIs) ifTrue:
[~false]. "been here before."
. self print: ['=---- CI 3 ====- ',
it envObj sch: nextTime. "Store Time."
> wrkLoad <- self ci3. "more Workload."
- ~true "ok, Run"
£ | testCI4 | nextTime |
. nextTime<- self ciStime.
- (nextTime <= self timels) ifTrue:
- (~false]. "been here before."
p: self print: ['====- ClI 4 -—=-- ',
: envObj sch: nextTime. "Store Time."
LN wrklLoad <- self ci4. "more Workload."
N ~true "ok, Run"
S | testcCIS | nextTime |
& nextTime<- self ciétime.
(nextTime <= self timels) ifTrue:
N (~false]. "been here before."
o self print: ['=---- CI 5 -—=-~ ',
N envObj sch: nextTime. "Store Time."
s wrkLoad <- self cis. "more Workload."
N ~ Atrue "ok, Run"
s | testCIé | nextTime |
- nextTime<- self ci7time.
e (nextTime <= self timeIs) ifTrue:
“ (~false]. "been here before."
- self print: [‘'-=---- CI 6 --~--- ',
[
v
: 121
A%
N
N S T L G e N £ N L B A R T (Y S A

R4S
'.'o
u‘,’*
RIA envObj sch: nextTime. "Store Time."
{ % wrkLoad <- self cie. "more Workload."
*# Atrue "ok, Run"
[
. | testcCI7 | nextTime |
e nextTime <- self ci8time.
N (nextTime <= self timels) ifTrue:
AN [~false]. "been here before."
N self print: ['----- CI 7 —-==- '),
1S envobj sch: nextTime. "Store Time."
' wrkload <- self ci7v. "more Workload."
R ~true "ok, Run"
v' | testcCIs | nextTime |
N nextTime<- self ci9time.
J," (nextTime <= self timelIs) ifTrue:
: [~false). "been here before."
eer self print: ['===-- ClI 8 ===—- '],
s envObj sch: nextTime. "Store Time."
%} wrklLoad <- self cis8. "more Workload."
o ~true "ok, Run"
)
» | testcCI9 | nextTime |
- nextTime<~- self cilOtime.
oo (nextTime <= self timeIs) ifTrue:
e (~false]. "been here before."
7 self print: ['----- CI 9 ===== ' .
oa envObj sch: nextTime. "Store Time."
. wrkLoad <- self cio9. "more Workload."
- ~true "ok, Run'
5%
o | testcCIlo | nextTime |
SN nextTime<- self stopTime.
Lok (nextTime <= self timeIs) ifTrue:
- [~false]. "been here before."
- self print: ['=---- Cl 10 ====- '),

j envObj sch: nextTime. "Store Time."
1 wrkLoad <- self cilo. "more Workload."
% ~true "ok, Run"

-]
i
y “q'-‘
¥ K-f'
e
I' o
-
o
R :.:_ ‘

G

>
Aok : 122
g& »

[}

N

9]

BRI X e I A iy |

h)
h 3 » 4 . BT e L I R IS R I R) LI P LIPS v T WP S S P e 3
s NN PN G P A A Ry T PR AT Y SRR
RS ATE S P e e N D o S AP

-_--
ndid Mol -

Class RestartTools

o
—4

Class RestartTools :Identity
[tcWrks: wrks bdys: bdys
A itttk bt L Ll LT List makers."
~ self 1: 'T' 1: wrks 1l: bdys
| ipWrks: wrks bdys: bdys routeTime: t
~ gself 1: 'I' 1: wrks 1: bdys 1: t
| cpWrks: wrks bdys: bdys routeTime: t
~ self 1: 'C' 1: wrks 1: bdys 1: t
| ipWrks: wrks bdys: bdys
‘ ~ 1: 'I' 1: wrks 1l: bdys 1: 180
" | cpWrks: wrks bdys: bdys
~ self 1: 'C' 1: wrks 1l: bdys 1: 180

LT ey

n
®
—
Hh

| cpBdys: b
~self 1: 'p' 1: b
| ipBdys: b
~self 1: (self 1l: 'i' 1l: b)

| tcBdys: b
~self 1l: (self 1: 't' 1l: D)

! [1: a | 1 |
-~ 1l <= List new.
o 1 add: a.
~1
" | 1: a 1l: b [1]
1 <- List new.
1l add: a.
1l add: b.
~1
| 1: a l: b 1l: ¢ | 1 |
1l <~ List new.
1l add: a.
1l add: b.
1l add: c.
~1
| 1: a l: b l: ¢ 1l: d [1 |
1 <- List new.
1l add: a.
1l add: b.
1 add: c.
1 add: d.
A1
2 . |l l:a 1l:b 1l:c 1l:d l:e | 1st |
lst <~ List new.
1st add: a.
l1st add: b.
lst add: c.
lst add: 4.
1st add: e.

.~

YN

.J‘} °

o’

-

. N

-
o 88

NI

»

123

»q
()¢ /
78]
.

3,

4
4

W WL P e L T e L To e e e
1‘$. ' \-p"-} d"n".{' o \.,"" N

. e e i LW
.aA'- l's'\ 5; ?'A .

~1lst

l:a 1:b l:c 1l:d 1l:e 1:f |

1st
1st
1st
1st
1st
1st
1st
~lst

l:a 1l:b l:c 1:d4 1
List

1lst
1st
1st
1lst
1st
1st
1st
1st
Alst

l:a 1:b 1l:c 1:4 1
List

1st
1st
1st
1st
1st
1st
1st
1st
1st

T

1st

<~ List new.

add:

a.

add: b.

add:
add:
addqd:
add:

<-
add:
add:
add:
add:

ad:
adad:
add:

<-
add:
add:
add:
add:
add:
add:
add:
add:

~lst

l:a 1:b l:c 1:d 1

lst
1lst
1st
1st
1st
1st
1st
1st
1st
1st
~lst

l:a 1:b l:c 1l:d4 1
List

1st
1st
lst
1st
lst
1st
1st
1st
1st

<-
add:
add:
add:
add:
add:
addqd:
add:
add:
add:

<-.
add:
add:
adad:
add:
add:
add:
add:
add:

C.
d.
e.
f.

a.
b.
c.
d.
e.
f.

g.

TQHO L0

a.
b.
c.

HQ HOQ

a.
b.
c.

JTQ o Q

te 1:f l:g |

lst
new.

te 1:f 1:g 1:h
new.

te 1:f l:g 1:h 1l:i

List new.

| 1lst |

| 1st |

te 1:f 1l:g 1:h 1:1i 1:j

new.

124

(it} '\.

£

T o S iy R R R N R A A R e S
R 203 {14 ot Yo AT R RN A N G S Y

......

ﬂ:ﬁsﬁz:ﬁ&
P

'

~ %
'::{, »
18 LA

PN
J{‘(; I

e
s
RS

.‘

¢ 4 A
L

-
- .
-

]

T
! o
'« ¥

B o X K
“ 5N

;

TA“.

X

TR,

4"‘. ety
N

| l:a 1

| l:a 1:b 1l:c

SRR B FRTREE

lst add: 1i.
lst add: j.
~1lst
tb 1l:c 1:d l:e 1:f 1l:g 1:h 1:1i 1:3 1l:k | 1lst |
lst <- List new.
lst add: a.
1st add: b.
lst add: c.
1lst add: d.
lst add: e.
lst add: f.
1st add: g.
lst add: h.
lst add: i.
lst add: j.
1st add: k.
~lst
l:d 1:e 1:f 1l:g 1:h
1:4 1:3 1 1 | 1st |
lst <- List new.
1st add: a.
lst add: b.
lst add: c.
1st add: d.
lst add: e.
1st add: f.
lst add: g.
1st add: h.
lst add: 1i.
lst add: j.
lst add: k.
1st add: 1.
~lst

125

——y ‘.“m
\

Class Simulation

Class Simulation :0bj
| globalData evQ go envObij |
[startUp
globalData _ GlobalData new.
envObj <- ((Environment new
idstartUp: globalData) startUp).
evQ _ (globalData eventQ).

go _ true.

| process | time process | :
time evQ key.
globalData timeIs: time.
process _ ev(Q remove.
(go and: [process notNil]) ifTrue:

[go _ globalData nextPrint: process.
process next.
~true
].
('exit go= ', (go printString) J]display.
smalltalk sh: 'mv go _stop'.
~false
]
4
126

""" R S A I R N R N
e T x,.i
'(';-f- -‘l‘;!‘-\.{.i-{ !.",.(SRR

A sl A

£ 0 € v g 1

-

S o S N Ly St

LY
»

¢, 0,

o

Class SuperReStart

Class SuperReStart :RestartTools

hh)

.......

| node |
{ go:env
~(env create: CollectionPoint)
deceased: (self cp)
"
* A (env create: IntermediatePoint)
* deceased: (self ip)
* reStart: self.
*
* ~(env create: TemporaryCemetery)
* deceased: (self tc)
*
* ~(env create: CollectionPoint)
* deceased: (self cp0)
*
* ~(env create: CollectionPoint)
* deceased: (self cpl)
*
* A (env create: IntermediatePoint)
* deceased: (self dIp)
* ~(env create: IntermediatePoint)
* deceased: (self cIp)
*
"
| cp .
~self cpWrks: 8 bdys: 54 routeTime: 7.
| tc
~self 1: (self tcWrks: 6 bdys: 6)
| ip
~self 1: '‘1¢
l: (self ipWrks: 7 bdys: O
routeTime: 180) "ii®
| fowardTrucksTo: p
node <- p.
self trkl.
self trk2.
"
~ messages to place CP trucks on the event queue
~ have the form:
~ node truckFull: nBdys at:(((Clock new)day: dd)hour:
127
.;:5&5524:;

.......
L

...............

-

a4

| trkl
,. node truckFull: 31 at: (((Clock new)day:4)hour:1ll).
¢ node truckFull: 5 at: (((Clock new)day:4)hour:12).
) node truckFull: 27 at: (((Clock new)day:5)hour:09).
; node truckFull: 14 at: (((Clock new)day:5)hour:1ll).
! node truckFull: 14 at: (((Clock new)day:6)hour:09).
) node truckFull: 1 at: (((Clock new)day:6)hour:11).
' | trkz2
node truckFull: 30 at: (((Clock new)day:6)hour:12).
ettt Other Work Loads. "
| ci2
~self cpBdys: 20
| cis3
: ~self cpBdys: 24
) | ci4
S ~self cpBdys: 17
- | ci5
B ~self cpBdys: 45
| cie
3 ~self cpBdys: 25
- | ci7
~self cpBdys: 48
> | cis
~self cpBdys: 66
» | ci9
E. ~self cpBdys: 104
ﬁ | cilo
: ~self cpBdys: 0
B
Memmem e Times of each CI."
‘ | ciltime "StartUp Time"
. ~((Clock new day:0) hour:04) min:0
X | ci2time
q ~((Clock new day:0) hour:22) min:0
-, | ci3time
5 ~((Clock new day:1) hour:04) min:0
w | cidtime
: A((Clock new day:1l) hour:16) min:0
| ciStime
. ~{(Clock new day:2) hour:04) min:0
| ciétime
A((Clock new day:2) hour:16) min:0
| ci7time
A((Clock new day:3) hour:04) min:0
! 128
W
[
; -
P R S N e A B S R S S e e

Ry I W T W W TR T TRy T an hia Abe Bfia Ak dbe Ann-he-aha dle AR Ao abo dbo Al *g WW

| ci8time
A((Clock new day:3) hour:16) min:0

| ci9time
~((Clock new day:4) hour:04) min:0
| cilOtime
~((Clock new day:4) hour:16) min:0
| stopTime "terminate Time"

~((Clock new day:10) hour:00) min:o0

129

[y »

- -

‘ e N A AR AT e L R PO CPAT LI A O
"A'!.lﬂ OGN ‘St, ‘..‘?0 y i’.‘ v ’c] ?i-"-,-‘l‘.o ..o.o‘ L L "- »

e “an
= i‘a :
o
PP

¢ 3 Class Task
“
f Class Task :CollectionClass
§.ﬂ | body
. workerList "A List of the
- workers moving the body."
Tk name
, uniTime
BN |
%& [startUp '
body <~ nil.
— uniTime <- Uniform new var20: (self taskTime).
by :""‘.”
Lt | taskClock | tck |
o tck <- uniTime taskClock.
od ~tck
; | name: n
Ve Aname <- n
AL | printString
oo Aname.
BS - body isNil ifTrue: [“name)
A ifFalse:[~(name,
, (', (body printString), ')')7J.
e | body: b
o body <- b
2 | body
e . ESC_I}_’____"
- | setWorking | w |
if‘ W <- workerList first.
ﬁ . [w notNil] whileTrue:
Qg (w setWorking.
:fﬁ- w <- workerList next
v,] .
. | workers
3”\ ~workerList.
LGN | workers: wl
I workerList <- wl.
e
ah | reSchedule: wObj | € |
— body notNil ifTrue: [
Pt (t <- wObj taskClock) notNil
B ifTrue:[wObj scheduleAfter: t]
0 ifFalse:
% : ['error...taskClock = nil' print.
AL wObj schedule: (wObj taskTime)].
‘] ifFalse: [
A self reTask: workerlist.
‘N
-~]
e J
b2
Ty
Wty
i
o -*; 130
o
W
| s‘r::'

L A PR AT B SRR . - B e
s - *’s’\}-., ‘ ‘,-'{'"‘:"‘\

A A AR NS |
G AL AR RSP P L P P N PTG AT

Matliac Les ARl ol el ek Aok Sat Sl el Mok Solk Sad fad Sl Jhdh Aod Aok Mot B 844 v"w‘c-u-v‘-v\rvf_wvvt'vw'T

Class TemporaryCemetery

Class TemporaryCemetery :CpTrucks

"Data" |
evacw ckIdw idaw "Workers doing tasks"
packw moveW "Workers doing tasks"
disRobeW fingerpW
dTailIdw shroudw
platesW digwW
mv2siteW dd3x5wW
shipPeW inCoverWw
evacQ ckIdQ idQ "Places to put bodys."
packQ moveQ "Places to put bodys."
disRobeQ fingerpQ
dTailIdQ shroudQ
platesQ notDugQ digQ dugQ
mv2siteQ dd3x5Q
shipPeQ inCoverqQ
groundQ
taskList "a list of triples (see makeTaskList)."
cplist "a list if objects for restarting."
"Methods" |
[prefix
Altl
| startUp

['TC | startUp ', (self printString) J]display.

super startTrucks.
self startQueues.

0 timesRepeat: [self addBodyOn: evacQ].
0 timesRepeat: [self addBodyOn: mv2siteQ].

self taskList: (taskList <- self makeTaskList).
| truckFull: bdys at: clock

(((((((self create: GenTruck) setCP: self
Yqueue: (self enterQ)

) setcCP "beenToCp"
) timeTo: 180 "180 minutes"
) bdys: bdys
) rate: O

} sch: clock.
('~ truckFull: ', (bdys printString),

' at: ', (clock printString))print.

~self.
| reStart: wl | bdys trk w |

['TC | cpList = ', (cplist printString)

e]Jdisplay.

0

\b' cplist do: [:x |

B ('TC | wl = ', (wl printString)

it '
]Jdisplay.

W <~ wl remove.

RO ['TC| x ="', (x printstring),
W ! w ="', (w printString)
ey]Jdisplay.
N X = self ifTrue:

. [self selfReStart: w]
ifFalse: [x reStart: w].

ol]
1N
nﬁf | selfReStart: w | trk ¢ b |
a:; ['TC|] w =", (w printString)]display.

et c <= w first.

X b <- w next.
q"t;
P (((((self create: GenTruck) setCP: self
fh) queue: (self enterQ)

‘) £ill: (self truckMin)
:§£ to: (self truckFull)

&) bdys: b
'R) schedule: 1.
e

. { deceased: list reStart: rs | car |

igj ['TC list=:, (list printString) J]display.
-0 cplist <~ List new.
. q "do self first"
; ? car <- list remove.

{ 'TC car=', (car printString)]display.
1 car first = 'T' ifTrue: [
‘_j‘ cplist add: (self selfStart: car).
3]ifFalse: [
}yg ['error: TC must be first.' J]display.
K\].
£ [list first notNil] whileTrue: [
car <- list remove.

Yol car first = 'I' ifTrue: [
{fﬁ cplist add: (((self
v create: IntermediatePoint
oo) truckNext: (self enterqQ)
s) deceased: car)
j— JifFalse: [

ol car first = 'C' ifTrue: |

e cplist add: (((self

- create: CollectionPoint

o) truckNext: (self enterQ)
v’) deceased: car)
R

223 132

N
WS

r",‘ w

|

A L e e RS S e T SO T i i v
1% 'tmiﬁ VAR AY VDR M N R 2 R P PR PR PO R S A A

ypas—— haa " b abd ol L ha - Al Ba- has aat i falo el Ash sl T

-

JifFalse: |
('TC error: bad input car= ',
(car printString),
! cdr= ', (list printString)
.]Jdisplay.
])]
> ['cplList = ', (cplList printString)]display.

Nt v el

rs fowardTrucksTo: self,

o | selfStart: list | foo pers bdys |
' foo <- list remove.
.. pers <= list remove.

: bdys <- list remove.

o ' (((((self create: GenTruck) setCP: self

o) queue: (self enterqQ)
) £fill: (self truckMin) to: (self truckFull)
") bdys: bdys
N) schedule: 1.
\
2 (((self iTask: (self create: IdleTask))
O setCP: self

) personal: pers
) scheduleNow.

. ((self demon: (self create: DemonTask))
! setCP: self
S) schedule: 10.

| makeTaskList | 1 |
3 1 <- List new.
<
L 1l add: (self makeTL: evacQ
< with: evacw
1 task: Evac).
1l add: (self makeTL: digQ
with: digw
taskN: Dig) .

1l add: (self makeTL: ckIdQ

with: ckIdw

task: CkId).
1l add: (self makeTL: moveQ

with: moveW

h task: Move).
s 1 add: (self makeTL: idQ
with: iaw
% task: Id) .
.- 1 add: (self makeTL: packQ
= with: packW
L~ task: Fack).
<
¥ 133
.3
8
»
R R A e T O T R A A DA R Rl

N 1l add: (self makeTL: disRobeQ
M with: disRobeW
N task: DisRobe).
s, 1l add: (self makeTL: fingerpQ
. with: fingerpw
task: Fingerp).
- 1l add: (self makeTL: dTailIdQ
~ with: dTailIdw
E task: DTailld).
A 1l add: (self makeTL: shroudQ
‘ with: shroudw i
aQf task: Shroud).
R 1 add: (self makeTL: platesQ
o with: platesW
3 task: Plates).
w 1 add: (self makeTL: mv2siteQ
) with: mv2siteW
task: Mv2site).
“ 1 add: (self makeTL: dd3x5Q
- with: dd3x5wW
v task: DA3x5).
Ky 1 add: (self makeTL: shipPeQ
T with: shipPeW
. taskN: ShipPe).
g 1 add: (self makeTL: inCoverqQ
! with: inCoverW
) task: InCover).
o
:_ Al
A "make the queues for the Collection Point."
! startQueues
N evacQ <- self unloadq.
o~ iag <- List new.
» ckIdQ <= List new.
moveQ <= List new.
‘5 packQ <~ List new.
3 disRobeQ <= List new.
b fingerpQ <= List new.
. _ dTailIdQ <- List new.
a shroudQ <- List new.
. platesQ <- List new.
- digQ <~ List new.
o dugQ <- List new.
> notDugQ <= List new.
. mv2siteQ <- List new.
> dd3x5Q <- List new. -
shipPeQ <= List new.
! inCoverQ <= List new.
groundQ <- List new.
X "Workers"
i evacW <- List new.
i iaw <- List new.
1
|
134 ‘

> B 'gaieadetn Sl ara aih aath Biedk g A O - v LAl Ale S Ade- ae fin TWC VT PUNE W YW=y~
N
oA

Wi
y ckIdW <~ List new. ;
l: moveW <- List new. !
308 packw <- List new. ;
'? disRobeW <- List new.
- fingerpw <= List new.
_— dTailIdw <- List new.
It shroudw <- List new.
§zj platesw <- List new.
b, digw <= List new.
‘*: mv2sitew <- List new.
v dd3xsw <= List new.
- shipPeW <= List new.
SJ inCoverw <- List new.
Ny .
ﬁ% | lightsoOut "No lights out."
&’ ~false
W o e e e o e s - - —
25 # NEXT
',- "
‘fz | procEvac: tObj | wkr bdy |
-
L wkr <- tObj workers first.
A bdy <- tObj body.
- tObj body: nil.
tf bdy notNil ifTrue:|[
& self put: bdy by: wkr
N on: digQ.
bdy beenToCP ifTrue:(
-x: self put: bdy by: wkr
- on: ckIdQ
. msg: 'completes Evac#, on'.
o JifFalse:
v self put: bdy by: wkr
- on: 1idQ
W msg: 'completes Evac form DD1077, on'.
- 1.
0“ rlt
YN (self testIdle: tObj) ifTrue:(
. bdy <- nil.
29 JifFalse: [
2 bdy <- self getBy: wkr from: evacQ
P msg: 'assigns Evac # to'.
e .
ﬁ%‘ self free: tObj when: bdy from: evacW.
S ; |
A |
"
o
.‘J-;.
'3: | procId: tObj | wkr bdy |
w wkr <- tObj workers first.
l-'
Yy
%
o 135
(W, 7
4
(3
R
b e ~
3 TN R A] R . (PR et U - PR S AN A LI P TN R A LT & LTV T N R R “ AP
: "y, A'ﬁ' -"" ‘. ., "’4" I{‘ “'.ﬂ""' t’o‘.'l! . "W LA, A .:0’:'... O T '*-.5‘ .:.

T TR T A TdTT T TR

bdy <~ tObj body.
tObj body: nil.

self put: bdy by: wkr
on: packQ
msg: 'completes Id and DD forms, on',

(self testIdle: tObj) ifTrue:[

bdy <~ nil. "reTask"
]ifFalse: [
bdy <- self getBy: wkr from: idQ
nsg: 'starts to Id4d’'.
].
self free: tObj when: bdy from: idw.
~bdy.
| procCkId: tObj | wkr bdy |

wkr <- tObj workers first.
bdy <~ toObj body.
tObj body: nil.

self put: bdy by: wkr
on: moveQ
msg: 'completes CkId and DD forms, on'.

(self testIdle: tObj) ifTrue:[

bdy <- nil. "reTask"
JifFalse: [
bdy <- self getBy: wkr from: ckIdQ
nsg: 'starts to CkI4'.
1.
self free: tObj when: bdy from: ckIdw.
~bdy.
| procPack: tObj | wkr bdy |

wkr <- tObj workers.
bdy <- tObj body.
tObj body: nil.

self put: bdy by: wkr
on: disRobeQ
msg: ‘'completes Moving, of'.

(self testIdle: tObj) ifTrue:]|

bdy <- nil. "reTask"
JifFalse: [
bdy <~ self getBy: Wwkr from: packQ
msqg: 'start to Pack and Move'.
].
136

‘ P ‘l\r mat e e R I ."-.A“_. C et .-A‘_ F T ; TeaTs " .\ 3 ..: . ™ ‘-. '\; ‘-;:d
R\- m&.ﬁm@mwg}AA‘*LM“}mmm .A‘.‘.A'.‘.‘.LA .L..l“ A

i l."l.

‘:3 self free: tObj when: bdy from: packW.
N ~bdy.

o .
fks | procMove: tObj | wkr bdy |
gt wkr <- tObj workers.
5% bdy <= tObj body.
b tobj body: nil.
NN
b, self put: bdy by: wkr
e ‘ on: disRobeQ
e nsg: 'finishes Moving, of'.
ud (self testIdle: tObj) ifTrue:[
o bdy <- nil.

'y lJifFalse: [
Ve bdy <- self getBy: wkr from: moveQ
“ msqg: '‘start to Move'.
(M X, .
j,% self free: tObj when: bdy from: moveW.
Jg) Abdy .

M | procDisRobe: tObj | wkr bdy |

228 wkr <- tObj workers.
-, bdy <- tObj body.
385 tObj body: nil.

e

Y. self put: bdy by: wkr

. on: fingerpQ msg: ‘has disrobed’'.
PN (self testIdle: tObj) ifTrue:[
ol bdy <- nil

~]JifFalse: [
) bdy <- self getBy: wkr from: disRobeQ
. msg: 'starts to disrobed'.
AV 1.
ﬁfg self free: tObj when: bdy from: disRobeW.
"ﬁ ~bdy.
.f&
N ',:
~t's | procFingerP: tObj | wkr bdy |
{ “
o wkr <- tObj workers first.

M bdy <- tObj body.
! - tObj body: nil.
:;: self put: bdy by: wkr

AR on: dTailidQ

~n msg: 'completes FingerP, on'.
] \,"\

) (self testIdle: tObj) ifTrue:(
L)
fﬁ:
sty

) 137
::::.
ey
7

"--_‘
b "(-'. L A AP R S v i d

N TR R A SRR A e v A AT R I PRI L A Y R A A N R SIS .
T S e .'J"-"\J'?Wa\"'. S -\.J‘\.*ﬂ':.) "‘f'*\r“.““’.r*.r'-”’a")‘ N RN Ry AN et ~ ‘\ AT :-
i, Wy A2 ! Wy . - W Yoy A % B W% B o 2 ; ; N A e 3 Rk iy

sg bdy <- nil.
5 JifFalse: [
e bdy <- self getBy: wkr from: fingerpQ
b msg: 'starts to FingerP, of'.
.].
ctd self free: tObj when: bdy from: fingerpw.
2 ;\.: ~bdy.
s
L
Wy . .
| procDTailId: tObj | wkr bdy |
" wkr <- tObj workers first.
oy bdy <- tObj body.
" tObj body: nil.
.
o self put: bdy by: wkr
o on: shroudQ
> msg: 'completes DTailId, on'.
;{? (self testIdle: tObj) ifTrue:(
‘4 bdy <- nil.
" JifFalse: [
. bdy <- self getBy: wkr from: dTailIdQ
2% msg: 'starts to DTailld, of'.
v 1.
e self free: tObj when: bdy from: dTailIaw.
< ~bdy.
A i A
Et% | procShroud: tObj | wkr bdy |
]
[~
¢;§ wkr <- tObj workers.
o bdy <- tObj body.
Wb tObj body: nil.
x@‘ self put: bdy by: wkr
Y on: platesQ
:, nsg: '‘completes Shroud, on'.
W (self testIdle: tObj) ifTrue:[
. bdy <- nil.
b0 JifFalse: [J
b bdy <- self getBy: wkr from: shroudQ
- nsg: 'starts to Shroud, of'.
X self free: tObj when: bdy from: shroudWw.
. ~bdy.
g
&Ej | procPlates: tObj | wkr bdy |
K<
R
<
‘sj 138
s
Wt

4

-‘
o

.
. .
!

-5, 3
']

o~

L)
’

P et TS TR N T LR Y
ol AT ~) .
AL, SECALY \\ o "y‘ 3 e

-9,
-

wkr <- tObj workers first.
bdy <- tObj body.
tObj body: nil.

self put: bdy by: wkr

on: mv2siteQ

msg: '‘completes making plates, on'.
bdy <- nil.

(self testIdle: tObj) ifFalse: [
bdy <- self getBy: wkr from: platesQ
nsg: 'starts to make Plates for'.
]l
self free: tObj when: bdy from: platesW.
~bdy.

| procDig: tObj | wkr bdy |
wkr <- tObj workers first.

bdy <- tObj body.
tObj body: nil.

self put: bdy by: wkr
on: 4dugQ
msqg: '‘completes the hole, for'.
(self testIdle: tObj) ifTrue:|[
bdy <- nil.
JifFalse: [
bdy <- self getBy: wkr from: digQ

self free: tObj when: bdy from: digW.
Abdy.

| procMv2site: tObj | wkr bdy |
wkr <- tObj workers.

bdy <- tObj body.
tObj body: nil.

self put: bdy by: wkr
on: dd3x5Q
msg: 'completes moving to site, with'.

(self testIdle: tObj) ifTrue:[

bdy <- nil.
]ifFalse: [
bdy <- self getBy: Wwkr from: nv2siteQ.

bdy notNil ifTrue: [
(dugQ remove: bdy
ifAbsent: [nil J]) isNil ifTrue:]|

139

nsg: ‘starts to dig a heole , for'.

bdy <- self getHole: bdy.
)] 1.
bdy notNil ifTrue: [
self msg: 'starts to move to site, with '
wkr: wkr bdy: bdy.

self free: tObj when: bdy from: mv2siteW.
~bdy.

| getHole: bdy | b w |
(b <= dugQ remove) isNil ifTrue: [
self put: bdy on: notDugQ.
('body(', (bdy printsString),
')s hole is not yet pre-pared.' Jdisplay.
(digQ contain: b) ifFalse: [
((w <- digW first) isNil or:
[(w body == bdy) not]) isTrue: [
self put: bdy on: digQ
] 1.
~nil
] ifFalse: |
self put: b on: digQ.

(', (bdy printString),
') is to be placed in (',
(b printString), ')s hole.'
]Jdisplay.
~bdy

].
"All bodies that were not ready for the mv2site
are in the notDugQ. These bodies are put on the mv2siteQ

when the hole is ready (ie. the body is in the dugQ). "
| procDemon | 1 |

l <~ List new.
notbugQ do: [:b |
1l add: b.
self put: b on: mv2siteQ.
1.
1l do: [:b | notDugQ remove: b].

| procDhd3x5: tObj [Wkr bdy |
wkr <- tObj workers first.

bdy <- tObj body.
tObj body: nil.

self put: bdy by: wkr

on: inCoverQ

nsqg: 'completes Dd3x5, on'.
self put: bdy by: wkr

on: shipPeQ.

140

A RRER R ..'_-..-- ‘;“K“-"-'\'.\"\"\"J‘-""\‘-y--'\-r‘('.‘-" D S N 2P AR S Nt e e et e e -
" . y 'nm" fh;'s, -

'y . B SN - P - ™ e L P R N
RO N A ey LT AT L, R N R R
- i\ﬂ;&iﬁuﬂ.&h‘iﬂd‘iﬁh v 0 Sy W W T P T, N, G UL P, . PP T W W S

A et

| e o A b e s e e A il Al A e LA il ake sus i A Al i e i~ e it At s i it g San il it de Aot fah Aeh Ak med et Ad s |

(self testIdle: tObj) ifTrue:|

bdy <- nil.
JifFalse: [
bdy <- self getBy: wkr from: dd3x5Q

msqg: 'starts to DA3x5, of'.
].
self free: tObj when: bdy from: dd3x5W.
~bdy.

| procShipPe: tObj | wkr bdy |

wKr <- tObj workers first.
tObj body: nil.

self msg: 'completes PE for shipment for'
wkr: wkr bdy: bdy.
(self testIdle: tObj) ifTrue:[
bdy <- nil.
JifFalse: [
bdy <- self getBy: wkr from: shipPeQ

msg: 'starts to shipPe, of'.
].
self free: tObj when: bdy from: shipPeW.

~bdy.

| procInCover: tObj | wkr bdy |

wkr <- tObj workers.
bdy <~ tObj body.
tObj body: nil.

self put: bdy by: wkr
on: groundQ
msg: ‘completes covering the grave of'.

(self testIdle: tObj) ifTrue:[

]ifFalse: [
bdy <- self getBy: wkr from: inCovergQ

msg: 'starts to put into grave for'.
self free: tObj when: bdy from: inCoverW.

~bdy.

141

list
(' e dugQ ', (dugQ printString))print. .
(' @ notDugQ ', (notDugQ printString))print.
(' @ groundQ size=', (groundQ size printString),
' work load=',
(self countIs printString))print.
' @ memmmmmcmemrm e ' print.
| list
self listInTruck.
self listTask: taskList.
self listQs.
| listWorkerTask
self listInTruck.
self listTask: taskList.
self listQs.
self append: 'Bdys' to: (self countIs).
self append: 'ThruPut' to: (groundQ size).
self listOutTC.
self reTask.
]
1 Zj'.
7
o
'.'.
Pl
10 142
R
%
d' - ML et e T S A S Py R A PPN 2 e Rt T A e W T A Tt T e T AR T ‘-*
B L A T L e v e b e s

Class Truck

Class Truck :CollectionClass
[contents "Where the bodies go."
destination "Unloading location."
beenToCP
|
[startUp
beenToCP <- 0.
contents <- List new.
| £ill: n | time bdy |
(' | £i11: ', (n printString),
' beenToCP = !,

(beenToCP printstring))print.
time <- (Clock new) set: (self timels).
n timesRepeat:

[bdy <- ((self create: Body

) beenToCP: beenToCP
} deathAt: time.
contents add: bdy.

].
self print:[((self printString),

' drives toward collection station.')].
~self.
| printString
~super printString, (contents printString)
| goingTo: loc "Tell the truck driver where to go."
destination <- loc.
| prefix: parent "make parent's name part of the prefix"

~parent, 'trk'

| beenToCP: btc
beenToCP <- btc

"Contents testing/removing/adding"
| remove: aBody
~contents removeKey: aBody
| remove
~contents remove
| first
~contents first
| contents
~contents
| isEmpty
~contents isEmpty
| size
~contents size
| add: t put: bdy
~contents add: bdy.

143

S N T N T T L N P S N

G T % SR AR VR R R

- {‘J"

- .
-
-
-

T IT

-
K

-

» 7-
A

-
.
.o

IR

o s o
- >

D 1'_"_

"Scheduling"

next

leave:

destination isNil ifTrue: [
self print: [((self printString),
' motors off into the sun set.'))
] ifFalse: [

self print: [((self printString),
' arrives.')].

destination add: (self timels)
put: self.

destination <- nil.

1.

loc timeTo: t2

self nightTime ifTrue: [
t2 <= t2 * 2,

].

destination <- loc.
self schedule: t2.

144

Class
| ab
[from: start

start

| var20: min
s3 <-
n <-

—m

Class Uniform

Uniform tProbability

| "uniform distribution on [a,b] "
to: stop "initialize a and b"

< stop
ifTrue: [a <- start. b <- stop]
ifFalse: [a <- stop. b <- start].
|ln a b s3]

3 sqgrt.

(min / 5) * s3.

a <- min - n.

b <= min + n.

| taskClock | rnd|
rnd <- self next.
~((Clock new)
incMin: (rnd integerPart)
) incSec: ((rnd fractionPart * 60) roundTo:1l).
| mean
A~ (a+ b) / 2.
| variance
~ (b - a) squared / 1l2.
| density: x
(X between: a and: b)
ifTrue: [~ 1.0 / (b - a)]
ifFalse: [~ 0.0].
| sample: x
(a =D>b) ifTrue: [~ a]
ifFalse: [~ a + (x * (b - a))].
]
145
B SR 5 e B O e e e s MR

ST
Rl RoNt "'f.'-‘x.xﬁ

“
ey
X
R
WY Class UserAccess
hy N
ﬁ:’
e o .
Ky " This is a superclass of each object.
o It allows access to the user data."
il Class UserAccess :0bj
. | userData |
iy [userSetUp: ud
SN userData _ ud.
‘ot "Give the wake up time."

"e.f’l : -
| morning: ck

ey ck _ Clock new: (self timels).
}#ﬂ (ck hour > 8)ifTrue:|

ﬂ‘ ck incDay: 1.

) 1.

3& ck hour: 8.

ck min: 0.

ck sec: 0.

%”} Ack
> M e e
&» Passes on info. about when to terminate the IdleTasks.
*. 4N "
- | setStop
i userData setStop.
N | stopable
=‘;: auserData stopable.
E R
B 0
O " add one to counter. "
| foo
ER: userData foo: ((userData foo) + 1)
‘fi | start
;*u userData start.
S | terminateNow
. userData terminateNow
SO | terminate
I userData terminate.
5304 " Describe a result. "
s . | report
& (" report from ',
- (self printString) yprint.
o ('total number of passengers = !,
S (userData foo prlntstrlng) Yprint.
g l======== ====m==== ='print.
P\ W']
df \
Y
o
L%
\'
. ‘q
™
!
<ot
sj 146
Ny

. i ’l T
oA
AR

t
—
‘ - -
‘ I ~ D :,‘-.‘ : ".-;'.\-;:.,h" :-I‘I-'“’\p“‘.- '? ‘. l.\ n
. R b b sa Bl BN 2N s

B A v V'

N AR A T
v.‘l Ral " 5) p..

Class UserData

" This is a storage for global data.
The data and messages for all global data are
defined in this class. "
Class UserData :0bj
| foo stop start n

stopable "Set when the last CI is reached."
sumBodys
\ nBodys
|
' [new
start <- 0. “Number of idle tasks running."
stop <- false. "Flag the terminate state."
stopable <- false.
n <- 0.
. " This must be defined. May be empty."
4 " nextPrint is run before each event."
K | nextPrint: process It
v t <- self timels.
[<, (n printstring),
. >, (t printsString),
: ' ', (process printString)
]Jdisplay.
n<-n+ 1, "stop conditions"
stop ifTrue: [~false].
) ~true.
! U
: Allow the idleTasks to terminate.
"
: | setStop
stopable <- true.
K | stopable
K ~stopable.
)
| start "count the number of running idle tasks."
start <- start + 1.
. [(self printString), ' start = !,
) (start printString)] display.
| terminate "Terminate when all idle tasks stop."
(start <- start - 1) <1
ifTrue: [self terminateNow).
[(self printString), ' stop ="',
: (start printString)] display.
N | terminateNow
' stop <- true
[}
J
»

5 147

.Q .
l.’c!

\"\-I' =" J‘

1\\‘5: '{‘_\. t \‘- \-*{

a8 .l. !," “,"l. P ‘

) | foo: £ " set foo "
oy foo <- f
;Q-.‘ | foo " recall foo "
5 ~foo

Lol of W Wl '

DG

148

Ly

—
'

[}
‘.' \]

S

¢

e

Ay “u “dp"m) "1 o " i Ly P P i " h N ha) B, o T W “‘h o 'F - }¥a' [h =
O A e £ R % WA T : P N ‘ a0
0 10 ?‘i""'*"-'! Realllall e GO SRR ANONCYS, a‘el. ot 5 :'0‘!'&.\ o’-’o L)J Vr DM i .!.‘Q‘J) WA

"
'

¥

X A ‘

-
S
>

;E Class Worker
N
e Class Worker :CollectionClass

P} I

RN idleMax idleCount

K. taskobj " what we are doing "
A% lastFun lastTime workTime idleTime

o todayWorkTime

N name

. sleeping

W !

b, [startUp

N lastTime <- Clock new.

- workTime <- Clock new.

todayWorkTime <- Clock new.
idleTime <=- Clock new.

R lastFun <- 'null’.

K sleeping <- false.

'~ name <- super printString.

A

& taskObj <= nil. " what we are doing "
i¢: idleMax <- 6. "number of times
:; to wait idle, then quit"
24 idleCount <- 0.
¢
™ | prefix: echelon

] * (echelon, 'W')

| body

e taskObj notNil ifTrue: [~(taskObj body)].
N Anil

;w | printString {bdy s m|

A s <= '',

. m <- false.

o taskObj notNil ifTrue:
o8 [(bdy <- taskObj body) notNil ifTrue:
b [s <= s, (bdy printString).
L m <- true.

' .

. sleeping ifTrue: [

. s <- s, 's'.
L~

Yy m <- true.

i 1.
& m ifTrue: [s <= '(', s, ")' J.
<V G Aname, s.
Y | printTime | s mode]

- self setTime.

‘Y
N s <- name, ' ', (todayWorkTime printHM).
a mode <- ' ',

-
L+
42 149

I‘ .
B

B T R R A T T RS Y LAy 'x"."*.‘\.af'\
SR NI . .f.rf"-)'-r:(.r s o~
i AN NG Ve i u..:..u.a};.u.x ..\k...iu._. A WAV, .45.0..3'4 ri)_.l‘r_. i".m-[iu ¥

R OLGAGRGAGIE
'Aii_ﬂ'h_u’hi

x::'
A
"!'c.
ﬁﬁ lastFun = 'Working' ifTrue: [mode <- 'w'].
g sleeping ifTrue: [mode <- 's'].
%> (s, mode)
Bl
B Bt ettt b b DL control/query the sleep state."
. | setSleeping
a{ sleeping <- true.
’,
:#ﬁ | sleeping
:MJ ~sleeping.
LN
. B it let Dkt How to start up a worker."
2§ | task: wl create: objClass | tObj |
_“? tObj <- self create: objClass.
:\' tObj startUpTask.
e t0bj workers: wl.
wl do:[:w |
F-s w taskObj: tObj.
N w setWorking.
) 1.
s ~tO0bj
£ Sy
. | taskObj: t
' taskObj <- t.
RS | taskObj
P ~taskobj.
Ay
N, | setTime It dt|
. t <- self timels.
) dt <- t - lastTime.
N lastFun = 'Idle!'
)ﬂ ifTrue: [
"y idleTime <- idleTime + dt.
Wl JifFalse:[
lastFun = 'Working'
N ifTrue: [
B todayWorkTime <~ todayWorkTime + dt.
) workTime <- workTime + dt.
o]].
Y lastTime <~ t.
e | setTime: fun
iﬁ? self setTime.
p- - lastFun <- fun.
'-“j
R | setIdle
A% taskObj <- nil.
- self setTime: 'Idle’.
20 .
Nh | setWorking
'-.‘
1
o
\::_ 150
pov.
-~
¥ 5 G) ¥ k LW WL -«'.- q.,. - ATl et mt, ’.‘,'_-,\‘) 'i . .'_'.‘_’."_'.‘ :."_'-(_A:‘ - _-{: . S _'.'.--‘ ‘.y‘ ~.." ', PRI
LR R s A ey e S Ll e T I e

1."')

.....

J

self setTime: 'Working'

| todayWorkTime
~todayWorkTime
| hoursWorked jh m t]|

v\-\\ ‘h

;L.&Maf&kxm;f. Ak

h <~ todayWorkTime hour.

m <- todayWorkTime min / 60.
t <- h + m.

~t

------------ After the rest cycle."

self pr:({ ((self printString),

'is ready for work.

todayWorkTime <=~ Clock new.
sleeping <~ false.
self idleWorker: self

151

a'.:~.,... L oAt oAt
. . w

1.

Class GenericTasks

" Class AnyTask :Task

[startUpTask

| max number of workers allowed.
| min number of workers required
for one body.

| taskTime return the time required.
| prefix: echelon

| next

"

B atale b LTt T If There is a truck unload it."
Class Unloader :Task

[startUpTask

~self,
| max "number of workers allowed."
~AT.
| min "number of workers required for one body."
AZO
| taskTime "return the time required."
~2.

| prefix: echelon

~self name: (echelon, 'Unload')
| next

self setWorking.

self body: (self unloadTruck: self).
]
R il If There is a truck load it."
Class Loader :Task
[startUpTask
~self.
| prefix: echelon
~self name: (echelon, 'Load')

| max "number of workers allowed."

| min ° "number of workers required for one body."
| taskTimz. "return the time required."

| next ‘-

self setWorking.

self body: (self loadTruck: self).

Process to assign evacuation numbers. "

Class Evac :Task

152

-y - et vara
RTAY .- -
T BTRCIYARES

\AD

- - \~ el - .-1 - '(‘ <
S 1 SO
u R #.! . R

. "
\‘*J}\\.

P ARSI LI R PO P
N RN RN NN
- - = 2 - B -

P

-\»::‘.- w\-’wn .‘1 \

T T R D T T O D I T T O O T T T T I Ty Sor veyr v-«T

[startUpTask

~self.
| max "number of workers allowed."
~1.
| min "number of workers required for one body."
~1.
| taskTime "return the time required."®
~5.

| prefix: echelon
~self name: (echelon, 'Evac')
| next
self setWorking.
self body: (self procEvac: self).
self reSchedule: self.

Mo See who this is and process his personal effects. "
Class Id :Task

[startUpTask

~self.
| max "number of workers allowed.™
~999.
| min "number of workers required for one body."
~1.
| taskTime "return the time required"
~40.

| taskClock | ¢ |
¢ _ super taskClock.
(self body) fingerPrint ifTrue: [c incMin: 15].
Ac.
| prefix: echelon
~self name: (echelon, 'Id')
| next
self setWorking.
self body: (self procld: self).
self reSchedule: self,

"-- Pack into transport bag with PE and move to load area."
Class Pack :Task
[startUpTask

~self.
| max "number of workers allowed."
~999.
| min "number of workers required for one body."
A2'
| taskTime "return the time required."®
~10.

| prefix: echelon

153

B,
p V\r‘:"-

l

(
|
I

next

~self name: (echelon, 'Pack')

self setWorking.

self body: (self procPack: self).
self reSchedule: self.

---------------- Add him to the convoy list."
Class Dd :Task
startUpTask
~self.
max "number of workers allowed."
~l.
min "number of workers required for one body."
~1.
taskTime "return the time required.”
~5.

prefix: echelon

~self name: (echelon, 'DA')

| next
self setWorking.
self body: (self procDd: self).
self reSchedule: self.
)
W Process other overhead items required."
Class Misc :Task
[startUpTask
~self.
| max "number of workers allowed."
2999,
| min "number of workers required for one body."
~1.
| taskTime "return the time required."

~5.

prefix: echelon

next

- -

~self name: (echelon, 'Misc')

self setWorking.
self body: (self procMisc: self).
self reSchedule: self.

See who this is and process his personal effects.

Class CkId :Task
[startUpTask

l

max

AT NI

~self.
"number of workers allowed."

154

POt

"y

R A e R L S L AR R R R S S v A s MJ

bl anhaalanlh A

~999,

| min "number of workers required for one body."
~1.

| taskTime "return the time required"
~30.

| prefix: echelon
~self name: (echelon, 'CkId')
| next
self setWorking.
self body: (self procCkld: self).
self reSchedule: self.

________________ Move to load area."
Class Move :Task
[startUpTask

~self.
| max "number of workers allowed."
~999.
| min "number of workers required for one body."
~2.
| taskTime "return the time required."
AS.

| prefix: echelon
~self name: (echelon, 'Move')
| next
self setWorking.
self body: (self procMove: self).
self reSchedule: self.

e e D e L LDt Remove clothing.™"
Class DisRobe :Task
[startUpTask

~self,
| max "number of workers allowed.™
~999.
| min "number of workers required for one body."
A2‘
| taskTime "return the time required"
Azo.

| prefix: echelon
~self name: (echelon, 'DisRobe’')
| next
self setWorking.
self body: (self procDisRobe: self).
self reSchedule: self.

L Take finger prints."

155

" T T G AT AT o At . 3 i LV A ; N AN
> ; \ , !) I 2 o T Y Y N U AT M AE AN
REDL LA S S p._, RO g Lt AT R 3 A LB A A AN S VA A Y

-

o
Pl
'\..,

.

R

P XA

'
<,

Class Fingerp :Task
[startUpTask

~self.
| max "number of workers allowed."
~999.
| min "number of workers required for one body."
Al.
| taskTime "return the time required"
~15.

| prefix: echelon
~self name: (echelon, 'FingerpP')
| next
self setWorking.
self body: (self procFingerP: self).
self reSchedule: self,

L Do a detailed Id."
Class DTailId :Task
[startUpTask

~self.
| max "number of workers allowed."
~899.
| min "number of workers required for one body."
~1.
| taskTime "return the time required"
~30.

| prefix: echelon
~self name: (echelon, fDTailId')
| next
self setWorking.
self body: (self procDTailld: self).
self reSchedule: self.

L L e L L L Place body into shroud."
Class Shroud :Task
[startUpTask

~self.
| max "number of workers allowed."
~999.
| min "number of workers required for one body."
A20
| taskTime "return the time required"
Asl

| prefix: echelon
~self name: (echelon, 'Shroud')
| next
self setWorking.
self body: (self procShroud: self).
self reSchedule: self.

156

- Mt R " " a® -~

iy ATy T e Tt
O Y LN Nk

o

1

s O N S " ’-F" < !'n"f’ -.'.!f' Iy -‘_-. "
£ oL TN RN e N N K A

4
L P o

=y

-)
o
o
K B il Make Id Plates."
S Class Plates :Task
- [startUpTask
4 ~self.
ap. | max "number of workers allowed."
W ~2.
%h, | min "number of workers required for one body."
Wy Al.
e | taskTime "return the time required"
e ~10.
‘o8 | prefix: echelon
SN ~self name: (echelon, ‘'Plates')
a& | next
v self setWorking.
, self body: (self procPlates: self).
N self reSchedule: self.
-]
BN
' e Dig the Hole, with hole digger."
. Class Diy :Task
P [startUpTask
N ~rself.
g | max "number of workers allowed."
. ~1.
p
A | min "number of workers required for one body."
) ~l.
] ? | taskTime "return the time required"
S ~ "0,
N A | prefix: echelon
. $ ~self name: (echelon, 'Dig')
W | next

self setWorking.
N self body: (self procDig: self).

>, self reSchedule: self.

; f.
e]
b ’

e it Prepare personal effects for shipping."

Y. Class ShipPe :Task
‘:§ [startUpTask
s ~self.
o | max "number of workers allowed."
b ~999,

— | min "number of workers required for one body."
o ~l.
: g | taskTime "return the time required"
B A15.
f¥ | prefix: echelon

" ~self name: (echelon, 'ShipPe')

.

)

K

ﬁk 157

0.:~

DX

e N N S R e G Mo AT A » R X
ST AR AV R e, 4)
(X o B ’. w.‘l'-“.ﬂ"q 3 .‘!‘ﬁir " ‘ p‘t‘.‘b‘.-" .:'l

S TN T Ve TR Ty TS v C N P I
_.!"-r,l'yl')ﬂ.t.\’ ‘\‘q,*'g.l't,“j ,’l,’,!.‘.‘h 1N lnl‘k. ST o Lk AN r NN by L)

)

ot

v
fode g

-4_.
g e

v‘,
Ty
s

A A

- .

- Y

A

Y
-

-
-

ey) —"
e

e

| next

self setWorking.
self body: (self procShipPe: self).
self reSchedule: self.

R it L e Place body in grave and cover."
Class Mv2site :Task
[startUpTask

~self.
| max "number of workers allowed."
~999,
| min "number of workers required for one body."
~2.
| taskTime "return the time required"®
~10.

| prefix: echelon
~self name: (echelon, 'Mv2site')

| next
self setWorking.
self body: (self procMv2site: self).
self reSchedule: self.
]
B il DL L L LTt Prepare internment and plot records."
Class Dd3x5 :Task
[startUpTask
~self.
| max "number of workers allowed."
~1.
| min "number of workers required for one body."
~1.
| taskTime "return the time required"
~20.

| prefix: echelon
~self name: (echelon, 'DD3x5')
| next
self setWorking.
self body: (self procDd3x5: self).
self reSchedule: self.

R e Place body in grave and cover."
Class InCover :Task
[startUpTask

~self.
| max "number of workers allowed."
~999,
| min "number of workers required for one body."
A2l
| taskTime "return the time required"
~15.

158

VTt G AL Gl Gy g

| prefix: echelon o
~self name: (echelon, 'InCover!') N

| next J

self setWorking.

self body: (self procInCover: self).

self reSchedule: self.

3
159 3

r

4

Copies
12

SOOOLOCN Vit) OO Jou e X
e 'Y".‘f""‘""’:“"?.‘l,““l.."l‘.‘ * ‘IQ.I s ‘:“ "y, "v‘l S LRGN, ‘.. $

WUE O T T T WO T OO YT T T T

Organization

Administrator

Defense Technical Info Center
ATTN: DTIC-DDA

Cameron Station

Alexandria, VA 22304-~6145

HQDA
DAMA-ART-M
Washington, D.C. 20310

Commander

U.S. Army Materiel Command
ATTN: AMCDRA-ST

5001 Eisenhower Avenue
Alexandria, VA 2333-0001

Commander

Armament R&D Center
U.S. Army AMCCOM
ATIN: SMCAR-TSS
Dover, NJ 07801

Cocrmander

ATrarent F&D Center
U.S. Army AMCCOM
ATTN: SMCAR-TDC
Dever, NJ 07€01

Director

benet Weapons Laboratory
Arvzment R&D Cernter

1.S. Army AMCCOM

ATTK: SMCAR-LCE-TL
watervliet, NY 121&¢

Corzander

U,8. Army Armement, Munitions
arnd Chercical Ccmomand

ATTN: SMCAF-LSP-L

kock. Islanc, IL 6129¢

Cormznder

U.S. Army Aviaticn Research
anc Develiopment Cormand

ATTN: AMSAV-E

4300 Goodfellow Elvd

St. Louis, MC 63120

Director

U./S. Army Air Mobility Research
and Development Laboratory

Armes kesearch Center

Moffett Field, CA 94035

NS
v 1y,

s

Copies
B e ——

161

‘ " 'v‘;(""- Y

1<

-

0
!

sl 2ab _as aad Bag 4ok aad i Aok £of Aok 4

>
>
o
w

Organization

Commander

U.S. Army Communications-
Electronics Command

ATTN: AMSEL-ED

Fort Monmouth, NJ 07703

Commander

ERADCONM Technical Library

ATTN: DELSD-L (Reports Section)
Fort Monmouth, NJ 07703-5301

Commander

U.S. Army Missile Command

Research, Development & Engin-
eering Center

ATTN: AMSMI-RD

Redstone Arsencl, AL 35868

Director

U.S. Army Missile & Space
Intelligence Center

ATTN: AIAMS-YDL

Redstone Arsenal, AL 3589€-550"

Coamarder

U.S. Arrmy Tank Automotive Cmd
ATTN: AMSTA-TSL

Warren, MI 48397-5000

Director
U.S. Army TRADOC Systems Analycsi:
Activity
ATTN: ATAA-SL
White Sands Missile Range, NM
e 00!

Ccmmandant

U.S. Army Infantry School
ATTN: ATSBE-CD-CSC-0OR
Fort benning, GA 31905

Commander

U.S. Army Development and Emplov-
ment Agency

ATTN: MODE-TED-SAB

Fort Lewis, WA 98433

AFWL/SUL
Kirtland AFB, NM 87117 o
4

Air Force Armament Laboratory
ATTN: AFATL/DLODL

Eglin AFB, FL 32542-5000 &

v

(W

t

)

gt

A

by N R N N e N A L OO S L AR 'S
R S A A T A S T

Oreanization

Central Irtelligence Agency
0Zfice of Central Reference
Disserination Branch

Room GE-47 HQS

ABERDEEN PROVINC GROUND

Dir, USAMSAA
ATTN: AMXSY-D
AMXSY-MP, H. Cohen

Cdr, USATECOM

. . o
Washington, D.C. 20502 ATTN: AMSTE-TO-F
Cdr, CRDC, AMCCOM
ATTN: SMCCR-RSP-A
SMCCR-MU
SMCCR-SPS-IL g

- o -

162

, - - - . o, L s . -
DO A “" ‘1, - Y 4 alx X
ARG ""‘-" I "'Lr‘i "-‘AG". I y 2 s R “) '-i* .q.), |.‘Q"‘\‘S g:‘.‘ \ Al“n. ¢|-‘ ."l...n.hs') s

F N
i ~
USER EVALUATION SHEET/CHANGE OF ADDRESS .
This Laboratory undertakes a continuing effort to improve the quality of the :
reports it publishes. Your comments/answers to the items/questions below will y
aid us in our efforts. o
1. BRL Report Number Date of Report ¥
2. Date Report Received 3
3. Does this report satisfy a need? (Comment on purpose, related project, or 5
other area of interest for which the report will be used.) .
A
4. How specifically, is the report being used? (Information source, design
data, procedure, source of ideas, etc.)
r
»
-
v

5. Has the information in this report led to any quantitative savings as far ;
as man-hours or dollars saved, operating costs avoided or efficiencies achieved, -
etc? If so, please claborate.

[

N e e

6. General Comments. What do you think should be changed to improve future
reports? (Indicate changes to organization, technical content, format, etc.) -

Name
.
CURRENT Organization .
ADDRESS Address t
City, State, Zip o
7. If indicating a Change of Address or Address Correction, please provide the ;
New or Correct Address in Block 6 above and the Old or Incorrect address below. .
;&
qh
Name >
x 3
3 oLD Organization

ADDRESS Ny
Address X
. N

City, State, Zip
(Remove this sheet along the perforation, fold as indicated, staple or tape W

closed, and mail.)

“» .Y

PTGt

g%] Y Ny TR % S YR A
: S AN
R4S R4 D Tl N TR PR S T DT D T4 L

- — — — — —— —— —— — FOLD HERE — — ~— — — — — — —

Director NO POSTAGE
U.S. Army Ballistic Research Laboratory NECESSARY
ATTN: SLCBR-DD-T IF MAILED
MD 21005-5066 IN THE
Aberdeen Proving Ground, UNITED STATES
OFFICIAL BUSINESS]
PENALTY FOR PRIVATE USE. $300 BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO 12062 WASHINGTON,DC —
POSTAGE WILL BE PAID BY DEPARTMENT OF THE ARMY |
|
Director I
U.S. Army Ballistic Research Laboratory N
ATTN: SLCBR-DD-T
Aberdeen Proving Ground, MD 21005-9989 I
L]

IR RN SRR N

#0408, T PR gV, ¢

